101 research outputs found

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of ∼1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures

    No full text
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene

    a route towards defined surface functionalization

    Get PDF
    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems

    Laser Induced Creation of Antiferromagnetic 180 Degree Domains in NiO Pt Bilayers

    Get PDF
    The antiferromagnetic order in heterostructures of NiO Pt thin films can be modified by optical pulses. After the irradiation with laser light, the optically induced creation of antiferromagnetic domains can be observed by imaging the created domain structure utilizing the X ray magnetic linear dichroism effect. The effect of different laser polarizations on the domain formation can be studied and used to identify a polarization independent creation of 180 domain walls and domains with 180 different N el vector orientation. By varying the irradiation parameters, the switching mechanism can be determined to be thermally induced. This study demonstrates experimentally the possibility to optically create antiferromagnetic domains, an important step towards future functionalization of all optical switching mechanisms in antiferromagnet

    A Comparison of the Pitfall Trap, Winkler Extractor and Berlese Funnel for Sampling Ground-Dwelling Arthropods in Tropical Montane Cloud Forests

    Get PDF
    Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective

    The 2021 ultrafast spectroscopic probes of condensed matter roadmap

    Get PDF
    In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends

    Kranium and Visceralskelett der Stegocephalen und Amphibien

    No full text

    Submonolayer growth of CuPc on noble metal surfaces

    Get PDF
    The understanding of growth mechanisms and electronic properties is a key issue for improving the performance of small organic devices, in which the metal-organic interface and its properties play a crucial role. In this context we investigated the adsorption behavior and the electronic properties of copper-II-phthalocyanine (CuPc) within the first adsorbate layer on Au(111) and Cu(111). Together with recent results published for CuPc/Ag(111) [Kroger et al., New J. Phys. 12, 083038 (2010)] this leads to a comprehensive understanding of the adsorption of CuPc on noble metal surfaces: On Cu(111) the molecule-surface interaction is the strongest. The molecules chemisorb on the surface and form one-dimensional chains or two-dimensional islands, depending on coverage. This behavior indicates an attractive intermolecular interaction. In contrast, on Au(111) CuPc is only weakly physisorbed and behaves like a two-dimensional gas in a wide coverage regime. Only when densely packed do the molecules form ordered structures, which are scarcely influenced by the structure of the metallic surface. Molecule-molecule interaction is also very weak, but in contrast to CuPc on Ag(111) no clear indications for a repulsive interaction are found. Regarding the adsorption strength, this latter system represents an (possibly unique) intermediate case which enables the unusual intermolecular repulsion found recently. Our results highlight the special role of this model system, since the interaction of CuPc with the metal can be "tuned" in any order of the adsorption scenarios observed by selecting the right substrate material
    • …
    corecore