2,050 research outputs found

    Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot

    Get PDF
    We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor back action are excluded as the origin of the switching. We present an extension of the canonical double dot theory based on an intrinsic, thermal electron exchange process through the reservoirs, giving excellent agreement with the experiment. The electron spin is randomized by the exchange process, thus facilitating fast, gate-controlled spin initialization. At the same time, this process sets an intrinsic upper limit to the spin relaxation time.Comment: 4 pages, 5 figures (color

    GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing

    Get PDF
    We present measurements of the electron temperature using gate defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.Comment: 8 pages, 3 (color) figure

    Electrosynthesized molecularly imprinted polymers for protein recognition

    Get PDF
    Molecularly imprinted polymers (MIPs) for the recognition of proteins are expected to possess high affinity through the establishment of multiple interactions between the polymer matrix and the large number of functional groups of the target. However, while highly affine recognition sites need building blocks rich in complementary functionalities to their target, such units are likely to generate high levels of non-specific binding. This paradox, that nature solved by evolution for biological receptors, needs to be addressed by the implementation of new concepts in molecular imprinting of proteins. Additionally, the structural variability, large size and incompatibility with a range of monomers made the development of protein MIPs to take a slow start. While the majority of MIP preparation methods are variants of chemical polymerization, the polymerization of electroactive functional monomers emerged as a particularly advantageous approach for chemical sensing application. Electropolymerization can be performed from aqueous solutions to preserve the natural conformation of the protein templates, with high spatial resolution and electrochemical control of the polymerization process. This review compiles the latest results, identifying major trends and providing an outlook on the perspectives of electrosynthesised protein-imprinted MIPs for chemical sensing

    Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection

    Get PDF
    Molecularly imprinted polymers (MIPs) rendered selective solely by the imprinting with protein templates lacking of distinctive properties to facilitate strong target-MIP interaction are likely to exhibit medium to low template binding affinities. While this prohibits the use of such MIPs for applications requiring the assessment of very low template concentrations, their implementation for the quantification of high-abundance proteins seems to have a clear niche in the analytical practice. We investigated this opportunity by developing a polyscopoletin-based MIP nanofilm for the electrochemical determination of elevated human serum albumin (HSA) in urine. As reference for a low abundance protein ferritin-MIPs were also prepared by the same procedure. Under optimal conditions, the imprinted sensors gave a linear response to HSA in the concentration range of 20–100 mg/dm3, and to ferritin in the range of 120–360 mg/dm3. While as expected the obtained limit of detection was not sufficient to determine endogenous ferritin in plasma, the HSA-sensor was successfully employed to analyse urine samples of patients with albuminuria. The results suggest that MIP-based sensors may be applicable for quantifying high abundance proteins in a clinical setting

    MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing

    Get PDF
    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either “evolution in the test tube” of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the “biological” degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application

    Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss

    Get PDF
    The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight-loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight-loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6-weeks of age for 12-, 16-, or 20-weeks. A third group of mice was put on HFD for 12-weeks and then on ND for 8-weeks to mimic weight-loss. After these dietary challenges the tibia and femur were removed and analyzed by microCT for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity and mechanical testing was performed to assess bone strength. After 12-, 16-, or 20-weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight-loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16-weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12-, 16-, or 20-weeks of HFD, relative to ND controls, with only partial recovery after weight-loss. Mechanical testing demonstrated decreased fracture resistance after 20-weeks of HFD. Loss of mechanical integrity did not recover after weight-loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse model of diet-induced obesity and weight-loss

    Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability

    Get PDF
    The reaction rates of neutron capture reactions on light nuclei are important for reliably simulating nucleosynthesis in a variety of stellar scenarios. Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are calculated in the framework of a hybrid compound and direct capture model. The results are tabulated and compared with the results of previous calculations as well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for publication in Phys. Rev.

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO^- state.Comment: Revtex file + postscript file for one figur

    How Landscape Ecology Informs Global Land-Change Science and Policy

    Get PDF
    Landscape ecology is a discipline that explicitly considers the influence of time and space on the environmental patterns we observe and the processes that create them. Although many of the topics studied in landscape ecology have public policy implications, three are of particular concern: climate change; land use–land cover change (LULCC); and a particular type of LULCC, urbanization. These processes are interrelated, because LULCC is driven by both human activities (e.g., agricultural expansion and urban sprawl) and climate change (e.g., desertification). Climate change, in turn, will affect the way humans use landscapes. Interactions among these drivers of ecosystem change can have destabilizing and accelerating feedback, with consequences for human societies from local to global scales. These challenges require landscape ecologists to engage policymakers and practitioners in seeking long-term solutions, informed by an understanding of opportunities to mitigate the impacts of anthropogenic drivers on ecosystems and adapt to new ecological realities

    Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages.

    No full text
    Malaria sporozoites induce swift activation of antigen-specific CD8(+) T cells that inhibit the intracellular development of liver-stage parasites. The length of time of functional in vivo antigen presentation, estimated by monitoring the activation of antigen-specific CD8(+) T cells, is of short duration, with maximum T cell activation occurring within the first 8 h after immunization and lasting approximately 48 h. Although the magnitude of the CD8(+) T cell response closely correlates with the number of parasites used for immunization, increasing the time of antigen presentation by daily immunizations does not enhance the magnitude of this response. Thus, once a primary clonal burst is established, the CD8(+) T cell response becomes refractory or unresponsive to further antigenic stimulation. These findings strongly suggest that the most efficient strategy for the induction of primary CD8(+) T cell responses is the delivery of a maximal amount of antigen in a single dose, thereby ensuring a clonal burst that involves the largest number of precursors to become memory cells
    corecore