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We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge
switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor
backaction are excluded as the origin of the switching. We present an extension of the canonical double dot
theory based on an intrinsic, thermal electron exchange process through the reservoirs, giving excellent
agreement with the experiment. The electron spin is randomized by the exchange process, thus facilitating
fast, gate-controlled spin initialization. At the same time, this process sets an intrinsic upper limit to the spin
relaxation time.
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Spins in quantum dots [1] are promising candidates for
the realization of qubits—the elementary units of a quan-
tum computer. Great progress was made in recent years
towards implementing quantum information processing
schemes with electron spins in GaAs quantum dots
[2–8], which hold the potential for scaling to a large
number of qubits [9–11]. Stable qubits with long coherence
times are of crucial importance to execute numerous
coherent quantum gates. Spin echo and dynamical decou-
pling techniques were successfully employed to isolate the
electronic system from the slowly fluctuating nuclear spins
of the GaAs host material [3,12–15], enhancing the
coherence time T2 from below 1 μs to much longer times
exceeding 0.2 ms. A fundamental limit T2 ≤ 2T1 is set by
the spin relaxation time T1. In a magnetic field, spins relax
through spin-phonon coupling mediated by the spin-orbit
interaction [2,16–18]. Since here the spin-orbit coupling is
weak, very long T1 times result, exceeding 1 s at 1 T [19],
leaving ample room for further improvements of the spin
qubit coherence.
In this Letter, we report the experimental observation

of a thermal electron exchange process via the reservoirs of
a quantum dot, setting an intrinsic upper bound to T1,
which can be orders of magnitude lower than the funda-
mental spin-phonon limit [16]. The resulting metastable
charge states—appearing in the double dot (DD) in the
absence of interdot tunneling—make the exchange process
detectable with a charge sensor. Within a diamond shaped
region, the DD switches its charge state back and forth
over time from an electron on the left dot to an electron
on the right dot without direct interdot tunneling. After
excluding unintentional charge traps and sensor back-
action, we present an extension of the orthodox DD
transport theory accounting very well for the observations.

The exchange process can be used for fast qubit initial-
ization [7]. Finally, we outline ways to extend T1 up to the
spin-phonon limit.
The sample is fabricated from a GaAs heterostructure

with a 2D electron gas 110 nm below the surface (density
2.6 × 1011 cm−2 and mobility 4 × 105 cm2=V s). The
device layout, see Fig. 1(a), is adopted from Ref. [20].
Each dot adjacent to the DD (center) acts as a charge sensor
[21,22], changing conductance g up to a factor of 2 upon
adding one electron to the dot closer to the sensor. The high
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FIG. 1 (color). (a) Scanning electron micrograph of a nominally
identical device, with contacts (yellow) and gates (white boxes).
Gates p1–p3, wl, wr, and n are used to form the DD in the center
while L1–L3 control the left and R1–R3 the right sensor dot.
(b) Numerical derivative Δg with respect to p3 of the left sensor
conductance. (c) Larger CSD with gate configuration as in Fig. 2.
Circles indicate vertices where the metastability was observed.
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sensitivity is due to the steep edges of a Coulomb blockade
peak where the sensor is biased [20]. Simultaneously,
strong capacitive shifts of the sensor biasing point are seen
when changing DD gate voltages. Thus, compensation
with linear feedback on sensor plunger L2 is employed to
maintain charge sensitivity.
The experiment was done in a dilution refrigerator at

base temperature T ∼ 20 mK. Ag-epoxy microwave filters
and thermalizers [23] are mounted at the mixing chamber
for improved cooling [24,25], giving an electron temper-
ature of Te ∼ 60 mK from Coulomb blockade thermometry
[26]. All data presented here were acquired with the left
sensor dot, though the right sensor gives essentially the
same results. The DD reservoirs are held at the same
potential. The sensor is typically biased at 60 μV dc and the
resulting current is digitized in real time with a measure-
ment bandwidth of 10 kHz, limited by the signal to noise
ratio, not technical bandwidth.
The charge stability diagram (CSD) of the DD is shown

in Fig. 1(c). Sharp lines indicate charge transitions, forming
the usual DD honeycombs [27]. Nearly horizontal features
result from sensor Coulomb peaks due to poor compensa-
tion in the large scan. Charge states are labeled (N1, N2)
denoting the absolute number of electrons on the (left,
right) dot in the ground state. The first two triple points
are shown in Fig. 1(b). Dark lines designate transitions
involving a reservoir, while the bright line corresponds to
equal left and right dot energies (zero detuning), separating
the (1,0) and (0,1) states. The absence of curvature indi-
cates weak interdot tunneling. These data reflect standard
DD behavior as expected [27].
The CSD drastically changes upon reduction of the

interdot and reservoir tunnel rates; see Fig. 2. The zero
detuning line is no longer present, transforming instead into
a broad region where the DD enters a metastable charge
state, repeatedly switching between the (1,0) and (0,1)
configurations over time; see Fig. 3(e). The switching is

also visible in the standard deviation of the sensor signal,
see Fig. 2(b), and fits very well into a diamond drawn with
lines following the slopes of the reservoir transitions. This
suggests involvement of the reservoirs in the switching
process. The measurement bandwidth is too low here to
resolve the reservoir transitions in the standard deviation,
thus decreasing the size of the diamond compared to a
straight continuation of the reservoir lines.
To quantify the switching rates, we gather numerous

events throughout the diamond and histogram the dwell
times in either charge state, finding single exponential
decays. The rate ΓL for switching into the left dot is
given by the total number of switches N into the left dot
and the accumulated waiting time tR in the right dot,
ΓL≔Γð0;1Þ→ð1;0Þ ¼ N=tR. Similarly, ΓR is obtained, and ΓL;R
are shown in Figs. 3(a) and 3(b). These rates are largest
along the upper (a) or lower (b) edges, where a dot level
approaches its reservoir level, here incidentally reaching
the sensor bandwidth. Away from these edges, the rates fall
off exponentially by 3 orders of magnitude until a small
background rate is reached which varies weakly with gate
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FIG. 2 (color). Sensor Δg (a) and standard deviation of g (b)
from 20 ms measurement windows with reduced tunnel rates
compared to Fig. 1(b). Dashed lines indicate the borders of the
metastable diamond while solid lines show the reservoir tran-
sitions, obtained from (a). The white and yellow dots show gate
voltage configurations used in Figs. 3 and 4.
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FIG. 3 (color). (a),(b) Switching rates on a log color scale. (c)
Switching frequency f on a linear color scale. (d) Probability PR
of finding an electron in the right dot. (e) Real-time trace and (f)
ΓRðTÞ with exponential fit (red) to the high-T data, both taken at
the center of the diamond [white dot in Fig. 2(b)]. Data recorded
at 30 μV sensor bias voltage.
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voltages and is well above the smallest detectable rate.
Photon assisted tunneling, residual interdot tunneling or a
higher order process, possibly involving phonons [18],
could give rise to such a background rate.
The switching frequency f ¼ ðΓ−1

L þ Γ−1
R Þ−1 of the

complete process, i.e., from left to right dot and back,
peaks close to the triple points, see Fig. 3(c), and is low
elsewhere. The probability PR of finding an electron in the
right dot is PR ¼ ΓL=ðΓL þ ΓRÞ, shown in Fig. 3(d),
reproducing the standard DD CSD with equal probabilities
for an electron on the left or right dot at the zero detuning
line. In addition, the measured temperature dependence of
ΓR is shown in Fig. 3(f), recorded at the center of the
diamond [white dot Fig. 2(b)] for slightly different gate
voltages. The rate decreases exponentially with decreasing
temperature, indicating a thermally activated process, until
a background rate as described before is reached, giving an
upper limit to the electron temperature. The exponential
decay is potentially useful for thermometry [28], and again
suggests involvement of the reservoirs with their exponen-
tial tails of the Fermi-Dirac distributions. At elevated
temperatures, the switching rate exceeds the sensor band-
width, rendering the switching diamond invisible [29].
We note that the metastability shifts together with the DD

triple points upon gate voltage adjustments. In addition, it
disappears when introducing significant interdot tunneling,
and is visible also at higher vertices [red circles, Fig. 1(c)]
when zoomed-in data are taken (not shown). This confirms
the DD itself as the source of the switching, rather than
accidental charge traps [30–35]. Also, the switching dia-
mond does not exhibit gate hysteresis, ruling out latching
effects. Further, the switching persists when reducing the
sensor bias to 5 μV, far below theΔ ∼ 150 μeV of the short
diamond axis. This rules out sensor backaction, which is
observed at larger biases and exhibits a pronounced bias
dependence [36–41], unlike the metastability seen here.
Thus, this suggests an intrinsic DD process rather than an
extrinsic effect as the origin for the switching.
Based on these observations, we propose a model of

thermal electron exchange. Inside the diamond, both DD
one-electron levels lie below the reservoir Fermi level
εF ¼ 0; see Figs. 4(a) and 4(b). From a (0, 1) initial state
(ground state), the electron tunnels into a thermally
activated hole at the same energy in the adjacent reservoir,
bringing the DD into (0, 0). This is very slow since such a
state lies in the exponentially suppressed tail of the Fermi
function, setting the overall time scale for the slow switch-
ing rates. Then, an electron can either fill the initial state
(0,1) and restart the process, or it can end up in (1, 0). Both
of these transitions occur quickly—with essentially bare
tunnel rates—since the reservoir states at the corresponding
dot energies are fully occupied. Given negligible interdot
tunneling, the (1, 0) state is metastable, i.e., long lived, and
is detected by the charge sensor. Alternatively, the process
can go through (1, 1) instead of (0, 0) in a similar way.

To test this model in the experiment, we note that it
predicts the intermediate states (0, 0) and (1, 1), which were
not seen so far [see Fig. 3(e)]. If these are occupied long
enough, they are detectable with the charge sensor. Thus,
we decrease the tunnel coupling to the reservoirs, increas-
ing the time spent in the intermediate states. Further, we
heat the sample to 200 mK in order to obtain enough
switches per unit time despite decreased reservoir coupling.
With these changes, real-time sensor data is recorded; see
Fig. 4(c). Here, starting with (0, 1), the DD goes briefly to
the intermediate state (0, 0) before switching to (1, 0). The
DD is also sometimes seen in the (1, 1) intermediate state,
e.g., after t ¼ 7 s, here returning to where it was before the
excursion to (1, 1). Thus, we indeed observe the inter-
mediate states as predicted.
In the following, we provide an extension of the

orthodox theory for transport in DDs [27], incorporating
charge fluctuations. We note that the switching rates are
slow enough to validate a semiclassical description with
definite occupation numbers Nj of dots j ¼ 1; 2. The
charge fluctuations lead to switching between different

FIG. 4 (color). (a) Illustration of the model: (I) slow, thermally
activated tunneling into the reservoir, followed by (II) tunneling
into the metastable (1, 0) state. (b) Both μ1ð1; 0Þ and μ2ð0; 1Þ but
not μ1;2ð1; 1Þ are below the reservoir Fermi energy within the
shaded diamond of metastability. (c) Real-time sensor data for
reduced reservoir coupling at 200 mK in the center of the
diamond [white dot, Fig. 2(b)]. Switching via the intermediate
states (0, 0) and (1, 1) is seen. (d) Four state Markov chain of the
model. (e) Histogram of data from (c) as a function of the sensor
signal, normalized to the (0, 1) and (1, 0) positions. (f) For
comparison, at the (0, 0) triple point [yellow dot, Fig. 2(b)], the
(1, 1) state is not seen.
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configurations x ¼ ðN1; N2Þ, which we express through a
master equation for the occupation probabilities Px,

∂tPx ¼
X

x0≠x

½Px0Γx0→x − PxΓx→x0 �; ð1Þ

with Γx0→x the tunneling rate from configuration x0 to x.
In accordance with the experiment, we maintain only
x ¼ ð1; 0Þ; ð0; 1Þ; ð0; 0Þ; ð1; 1Þ and neglect direct interdot
tunneling. Hence, we keep only the rates ð1; 0Þ↔fð0; 0Þ;
ð1; 1Þg↔ð0; 1Þ for Eq. (1); see the Markov chain in
Fig. 4(d). By the Pauli principle, the bare tunneling rate
Γj between dot j ¼ 1; 2 and its neighboring lead is
weighted by the number of occupied lead states when
tunneling onto the dot, f(μjðN1; N2Þ), and by the number
of unoccupied lead states when tunneling out of the dot,
1 − f(μjðN1; N2Þ). Here μjðN1; N2Þ is the chemical poten-
tial of dot j [27], fðεÞ ¼ ½1þ expðε=kBTÞ�−1 the Fermi
function (with Boltzmann constant kB), and we have
chosen the zero of energy at the Fermi level εF ¼ 0 of
the unbiased leads. The energy dependence of Γ1;2 [42,43]
is very weak compared to the energy dependence of the
Fermi functions relevant here. Assuming energy indepen-
dent Γ1;2, this leads to the following set of rates:

Γð0;0Þ→ð0;1Þ ¼ Γ2f(μ2ð0; 1Þ); ð2Þ

Γð0;1Þ→ð0;0Þ ¼ Γ2½1 − f(μ2ð0; 1Þ)�; ð3Þ

Γð0;1Þ→ð1;1Þ ¼ Γ1f(μ1ð1; 1Þ); ð4Þ

Γð1;1Þ→ð0;1Þ ¼ Γ1½1 − f(μ1ð1; 1Þ)�: ð5Þ

The remaining rates are obtained by ð0; 1Þ → ð1; 0Þ and
exchanging indices 1↔2. The stationary solution ∂tPx ¼ 0
of Eq. (1) becomes the inversion of a 4 × 4matrix and leads
to the results shown in Figs. 5(a)–5(d), which reproduce
the main features in Fig. 3. The Fermi functions give the
exponentially increasing tunnel rates when approaching
the diamond boundaries. The zero detuning line exhibits
no special feature in ΓL;R, as also observed, since direct
interdot tunneling is absent. All these features reproduce
the main experimental observations.
The background rates are not captured by the model,

since it does not include photon absorption, interdot
tunneling, and cotunneling. Interestingly, PR ≈ 0.5 exhibits
a slight S shape in the experiment, see Fig. 3(d), while the
model calculates a straight line, see Fig. 5(d). We note that
the S shape approaches a straight line upon reducing sensor
bias. Thus, this is a sensor backaction effect [44] not
included in the model. We emphasize that only this S shape
is a backaction effect—the exchange process itself is
present in absence of charge sensing.
As a final test, we perform a quantitative analysis of real-

time data as shown in Fig. 4(c). We prepare histograms
displaying the total time spent in each state. Close to the

lower triple point, the average time spent in (0, 0) becomes
of the same order as the time spent in (0, 1) and (1, 0), while
(1, 1) is almost never populated [45], as seen in Fig. 4(f).
In the center of the diamond, the DD spends most of its time
in (0, 1) and (1, 0), and is rarely in (0, 0) or (1, 1); see Fig. 4(e).
Pairs of similar height peaks resultwhenΓ1 ∼ Γ2. The ratio of
the large to small peak height is given by a Boltzmann factor
exp½Δε=ðkBTeÞ�, whereΔε is the energy difference between
the DD levels and the reservoir. With Te ¼ 200 mK, good
agreement is found with Δε obtained using the lever
arm extracted from fitting a Fermi function to the reservoir
transitions. Thus, this again confirms the model.
In summary, we report intrinsic metastable charge state

switching within diamond shaped regions in a DD. The
thermally activated fluctuations involve a fast electron
exchange with the leads, leading to an apparent tunneling
between the left and right dot when direct interdot tunnel-
ing is negligible. An extended theory explains the obser-
vations very well and predicts intermediate charge states,
which are observed when reducing the reservoir tunnel
rates below the sensor bandwidth. We emphasize that
such thermally activated exchange continues to occur
when interdot tunneling is present—i.e., in the absence
of metastability—or even outside the diamond region. In
these cases, it is directly detectable via intermediate states
only when the sensor bandwidth exceeds the bare reservoir
tunnel rates, but is invisible otherwise, though it continues
to occur, possibly limiting T1.
The exchange of a dot electron with a reservoir electron

randomizes the DD state, thus setting an upper limit to T1

for both charge and spin qubits. Note that such electron
reservoir exchange appears also at other vertices, e.g.,

FIG. 5 (color). Modeled quantities analogous to Figs. 3(a)–3(d)
(Te ¼ 60 mK, Γ1;2 ¼ 20 kHz), agreeing well with experiments.
ΓL;R are shown with the color scale saturated at the lowest
rates seen.
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ð1; 1Þ − ð0; 2Þ with singlet-triplet states (see also Ref. [29]),
persists in a magnetic field, and is generically present in
any single, double, or multiple dot coupled to a reservoir,
irrespective of the host material. Taking typical values
Δε ¼ Δ=2 ¼ 75 μeV, Γ1;2 ¼ 20 MHz, Te ¼ 100 mK,
one obtains an upper bound T1 ¼ Γ−1 exp½Δε=ðkBTÞ� ∼
0.3 ms at the center of the diamond. Shifting the occupied
state towards the reservoir Fermi energy exponentially
enhances the exchange process, facilitating fast gate-
controlled spin initialization [7]. Decreasing Γ linearly
extends T1, while decreasing temperature or increasing the
energy splitting Δε using gate voltages does so exponen-
tially, until the spin-phonon coupling dominates, or another
process such as the background rate or sensor backaction
limits T1.
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