46 research outputs found

    Attosecond nanoplasmonic streaking of localized fields near metal nanospheres

    Full text link
    Collective electron dynamics in plasmonic nanosystems can unfold on timescales in the attosec- ond regime and the direct measurements of plasmonic near-field oscillations is highly desirable. We report on numerical studies on the application of attosecond nanoplasmonic streaking spectroscopy to the measurement of collective electron dynamics in isolated Au nanospheres. The plasmonic field oscillations are induced by a few-cycle NIR driving field and are mapped by the energy of photoemitted electrons using a synchronized, time-delayed attosecond XUV pulse. By a detailed analysis of the amplitudes and phase shifts, we identify the different regimes of nanoplasmonic streaking and study the dependence on particle size, XUV photoelectron energy and emission position. The simulations indicate that the near-fields around the nanoparticles can be spatio-temporally reconstructed and may give detailed insight into the build-up and decay of collective electron motion.Comment: Revised versio

    Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate

    Get PDF
    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier- envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camerasoftware allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈1013 W/cm2) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO2nanospheres

    Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    Get PDF
    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena

    Carrier - envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields

    Get PDF
    Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1–4) × 1013 W cm−2 are compared to quasi- classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities

    Reaktivitätsbestimrnung an der graphitmoderierten Kritischen Anlage KAHTER mittels Rauchsanalyse

    No full text
    Mit Hilfe eines neuen Meßverfahrens auf der Basis der Neutronenrauschanalyse wurden Reaktivitätsmessungen sowie Bestimmungender prompten Neutronenabklingkonstanten an einem extrem langsamen System, der "Kritischen Anlage Hochtemperaturreaktor" des Instituts für Reaktorentwicklung der KFA-Jülich (α\alphac_{c}=3.8 s 1^{-1}) durchgeführt. Das Verfahren ermöglicht die Bestimmung des Reaktorzustandes bei geringer Meßdauer und - im Vergleich mit anderen Methoden - auch relativ geringem Aufwand an Geräten. Dadurch, daß die Meßergebnisse bei festem Reaktorzustand von der Position der Detektoren unabhängig sind, ist eine rechnerische Korrektur der Meßergebnisse nicht notwendig. Der Reaktorzustand ergibt sich direkt aus dem Nulldurchgang der Korrelationsfunktion. Um die Anwendbarkeit dieser Meßmethode auf Leistungsreaktoren zu prüfen, wurde die mindestens notwendigeDetektor-Efficiency bestimmt. Es ergab sich, daß der Einsatz in großen HTR-Reaktoren, beispielsweise zur Oberwachung der Unterkritikalität im abgeschalteten Zustand, nicht ohne weiteres möglich ist, da dann die notwendige Detektor-Efficiency von etwa 104^{-4} nur sehr schwer zu erreichen sein dürfte. Möglich sind jedoch mit dieser Methode α\alphac{c}-Messungen auch bei großen HTRs beim erstmaligen Anfahren des Reaktors
    corecore