29 research outputs found

    Particle acceleration in rotating and shearing jets from AGN

    Get PDF
    We model the acceleration of energetic particles due to shear and centrifugal effects in rotating astrophysical jets. The appropriate equation describing the diffusive transport of energetic particles in a collisionless, rotating background flow is derived and analytical steady state solutions are discussed. In particular, by considering velocity profiles from rigid, over flat to Keplerian rotation, the effects of centrifugal and shear acceleration of particles scattered by magnetic inhomogeneities are distinguished. In the case where shear acceleration dominates, it is confirmed that power law particle momentum solutions f(p)p(3+α)f(p) \propto p^{-(3+\alpha)} exist, if the mean scattering time τcpα\tau_c \propto p^{\alpha} is an increasing function of momentum. We show that for a more complex interplay between shear and centrifugal acceleration, the recovered power law momentum spectra might be significantly steeper but flatten with increasing azimuthal velocity due to the increasing centrifugal effects. The possible relevance of shear and centrifugal acceleration for the observed extended emission in AGN is demonstrated for the case of the jet in the quasar 3C273.Comment: 15 pages (including 8 pages Appendix), 4 figures; accepted for publication in A&

    Thin Disk Theory with a Non-Zero Torque Boundary Condition and Comparisons with Simulations

    Full text link
    We present an analytical solution for thin disk accretion onto a Kerr black hole that extends the standard Novikov-Thorne alpha-disk in three ways: (i) it incorporates nonzero stresses at the inner edge of the disk, (ii) it extends into the plunging region, and (iii) it uses a corrected vertical gravity formula. The free parameters of the model are unchanged. Nonzero boundary stresses are included by replacing the Novikov-Thorne no torque boundary condition with the less strict requirement that the fluid velocity at the innermost stable circular orbit is the sound speed, which numerical models show to be the correct behavior for luminosities below ~30% Eddington. We assume the disk is thin so we can ignore advection. Boundary stresses scale as alpha*h and advection terms scale as h^2 (where h is the disk opening angle (h=H/r)), so the model is self-consistent when h < alpha. We compare our solution with slim disk models and general relativistic magnetohydrodynamic disk simulations. The model may improve the accuracy of black hole spin measurements.Comment: 11 pages, 8 figures, MNRAS accepte

    4U 1909+07: a well-hidden pearl

    Get PDF
    We present the first detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is detected in the ISGRI 20-40 keV energy band with an average countrate of 2.6 cps. The pulse period of ~604 sec is not stable, but changing erratically on timescales of years. The pulse profile is strongly energy dependent: it shows a double peaked structure at low energies, the secondary pulse decreases rapidly with increasing energy and above 20 keV only the primary pulse is visible. This evolution is consistent between PCA, HEXTE, and ISGRI. The phase averaged spectrum can be well described by the sum of a photoabsorbed power law with a cutoff at high energies and a blackbody component. To investigate the pulse profile, we performed phase resolved spectral analysis. We find that the changing spectrum can be best described with a variation of the folding energy. We rule out a correlation between the black body component and the continuum variation and discuss possible accretion geometries.Comment: 9 pages, 11 figures, accepted for publication in A&A Sect.

    Jet Precession Driven by Neutrino-Cooled Disc for Gamma-Ray Bursts

    Get PDF
    A model of jet precession driven by a neutrino-cooled disc around a spinning black hole is present in order to explain the temporal structure and spectral evolution of gamma-ray bursts (GRBs). The differential rotation of the outer part of a neutrino dominated accretion disc may result in precession of the inner part of the disc and the central black hole, hence drives a precessed jet via neutrino annihilation around the inner part of the disc. Both analytic and numeric results for our model are present. Our calculations show that a black hole-accretion disk system with black hole mass M3.66MM \simeq 3.66 M_\odot, accretion rate M˙0.54Ms1\dot{M} \simeq 0.54 M_\odot \rm s^{-1}, spin parameter a=0.9a=0.9 and viscosity parameter α=0.01\alpha=0.01 may drive a precessed jet with period P=1 s and luminosity L=1051L=10^{51} erg s1^{-1}, corresponding to the scenario for long GRBs. A precessed jet with P=0.1P=0.1s and L=1050L=10^{50} erg s1^{-1} may be powered by a system with M5.59MM \simeq 5.59 M_\odot, M˙0.74Ms1\dot{M} \simeq 0.74 M_\odot \rm s^{-1}, a=0.1a=0.1, and α=0.01\alpha=0.01, possibly being responsible for the short GRBs. Both the temporal and spectral evolution in GRB pulse may explained with our model. GRB central engines likely power a precessed jet driven by a neutrino-cooled disc. The global GRB lightcurves thus could be modulated by the jet precession during the accretion timescale of the GRB central engine. Both the temporal and spectral evolution in GRB pulse may be due to an viewing effect due to the jet precession.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Modeling of non-stationary accretion disks in X-ray novae A 0620-00 and GRS 1124-68 during outburst

    Get PDF
    We address the task of modeling soft X-ray and optical light curves of X-ray novae in the high/soft state. The analytic model of viscous evolution of an externally truncated accretion \alpha-disk is used. Relativistic effects near a Kerr black hole and self-irradiation of an accretion disk are taken into account. The model is applied to the outbursts of X-ray nova Monocerotis 1975 (A 0620-00) and X-ray nova Muscae 1991 (GRS 1124-68). Comparison of observational data with the model yields constraints on the angular momentum (the Kerr parameter) of the black holes in A 0620-00 and GRS 1124-68: 0.3-0.6 and \leq 0.4, and on the viscosity parameter \alpha of the disks: 0.7-0.95 and 0.55-0.75. We also conclude that the accretion disks should have an effective geometrical thickness 1.5-2 times greater than the theoretical value of the distance between the photometric layers.Comment: 12 pages, 11 figures, 1 table, accepted for publication in A&A (minor changens following the referee's comments, five references added

    A Toy Model for Magnetized Neutrino-Dominated Accretion Flows

    Full text link
    In this paper, we present a simplified model for magnetized neutrino-dominated accretion flow (NDAF) in which effect of black hole (BH) spin is taken into account by adopting a set of relativistic correction factor, and the magnetic field is parameterized as \beta, the ratio of the magnetic pressure to the total pressure. It is found that the disc properties are sensitive to the values of the BH spin and \beta, and more energy can be extracted from NDAF for the faster spin and lower \beta.Comment: 4 pages, 3 figures, accepted for publication in Science in China Series

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    The Relational Power of Education: The immeasurability of knowledge, value and meaning

    Full text link
    Recognizing the challenge of adequate evaluation in higher education, this essay introduces some of the critical, alternative-seeking conversation about educational measurement. The thesis is that knowledge, value, and meaning emerge in the relational dynamics of education, thus requiring complex approaches to evaluation, utilizing relational criteria. The method of the essay is to analyse two educational case studies à à à ¢ a travel seminar and a classroom course à à à ¢ in dialogue with educational literature and a process-relational philosophy of education. Building from this analysis, the essay concludes with proposals for relational criteria of evaluation: relations with self, community and culture, difference, earth, and social structures

    Gravitational Lensing from a Spacetime Perspective

    Full text link
    corecore