162 research outputs found

    Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Get PDF
    PURPOSE: The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). METHODS: Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. RESULTS: The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). CONCLUSION: This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase

    Sphingosine-1-phosphate as a key player of insulin secretion induced by high-density lipoprotein treatment.

    Get PDF
    Beta cell failure is one of the most important features of type 2 diabetes mellitus (T2DM). High-density lipoprotein (HDL) has been proposed to improve ÎČ-cell function. However, the mechanisms involved in this process are still poorly understood. The aim of this study was to investigate the contribution of sphingosine-1-phosphate (S1P) in the impact of HDL treatment on insulin secretion by pancreatic ÎČ-cells and to determine its mechanisms. Primary cultures of ÎČ-cells isolated from rat were treated with or without HDL in the presence or absence of S1P pathway inhibitors and insulin secretion response was analyzed. The S1P content of HDL (HDL-S1P) isolated from T2DM patients was analyzed and correlated to the HDL-induced insulin secretion. The expression of genes involved in the biosynthesis of the insulin was also evaluated. HDL as well as S1P treatment enhanced glucose-stimulated insulin secretion (GSIS). In HDL isolated from T2DM patients, while HDL-S1P was strongly correlated to its pro-secretory capacity (r = 0.633, p = 0.005), HDL-cholesterol and apolipoprotein AI levels were not. HDL-induced GSIS was blocked by the S1P1/3 antagonist but not by the S1P2 antagonist, and was also accompanied by increased intracellular S1P in ÎČ-cells. We also observed that HDL improved GSIS without significant changes in expression levels of insulin biosynthesis genes. Our present study highlights the importance HDL-S1P in GSIS in T2DM patients and demonstrates that HDL induces insulin secretion by a process involving both intra- and extra-cellular sources of S1P independently of an effect on insulin biosynthesis genes

    NMR spectroscopy and perfusion of mammalian cells using surface microprobes

    Get PDF
    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells response to environmental change

    Phenology of brown bear breeding season and related geographical cues

    Get PDF
    © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited[EN] Knowledge about breeding biology is often incomplete in species with complex reproductive strategies. The brown bear Ursus arctos is a polygamous seasonal breeder inhabiting a wide variety of habitats and environmental conditions. We compiled information about brown bear breeding season dates from 36 study areas across their distribution range in the Palearctic and Nearctic regions and investigated how their breeding phenology relates to geographical factors (latitude, photoperiod, altitude and region). Brown bear matings were observed for 8 months, from April to November, with a peak in May–July. We found a 59-day difference in the onset of bear breeding season among study areas, with an average 2.3 days delay for each degree of latitude northwards. The onset of the breeding season showed a strong relationship with photoperiod and latitude, but not with region (i.e. Palearctic vs Nearctic) and altitude. First observations of bear mating occurred earlier in areas at lower latitudes. Photoperiod ranged between 14 and 18 hours at the beginning of the season for most of the study areas. The duration of the breeding season ranged from 25 to 138 days among study areas. None of the investigated factors was related to the length of the breeding season. Our results support the relevance of photoperiod to the onset of breeding, as found in other ursids, but not a shorter breeding season at higher latitudes, a pattern reported in other mammals. Our findings suggest a marked seasonality of bear reproductive behaviour, but also certain level of plasticity. Systematic field observations of breeding behaviour are needed to increase our knowledge on the factors determining mating behaviour in species with complex systems and how these species may adapt to climate change.SIWe thank Marjan Artnak, Peter Bajc, Matic Brenk, TomĂĄĆĄ Flajs, UroĆĄ GrĆŸelj, Robert Hlavica, AleĆĄ Jagodnik, Peter Klančar, Anton Marinčič, Mariusz NędzyƄski, Borut Semenič and Vladimir Vician for providing information about their observations of bear mating. Robert Gatzka assisted with data collection in the Biezszcady Mountains. We thank Jon Swenson and Jumpei Tomiyasu for their help in the literature search. AGR and NS were supported by the BearConnect project funded by the National Science Centre in Poland (2016/22/Z/NZ8/00121) through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders ANR/DLR-PT/UEFISCDI/NCN/RCN. Additional funding from the Polish Ministry of Science and Higher Education (project NN304- 294037, NS, IEC, KB), the National Science Centre in Poland (project DEC-2013/08/M/NZ9/ 00469, NS), the National Centre for Research and Development (GLOBE, POL-NOR/198352/85/ 2013, NS, TZK, FZ) and Slovenian Research Agency (P4-0059, MK) is acknowledged. AGR and NS conceived the study and wrote a first draft of the paper; AGR and NS compiled the data, AGR analyzed the data; all authors provided data and comments that improved the manuscript. We thank two anonymous reviewers for useful comments on the previous versions of the manuscript

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Development of the infant foot as a load bearing structure : study protocol for a longitudinal evaluation (the Small Steps study)

    Get PDF
    Background An improved understanding of the structural and functional development of the paediatric foot is fundamental to a strong theoretical framework for health professionals and scientists. An infant’s transition from sitting, through crawling and cruising, to walking is when the structures and function of the foot must adapt to bearing load. The adaptation of skin and other hard and soft tissue, and foot and gait biomechanics, during this time is poorly understood. This is because data characterising the foot tissue and loading pre-walking onset does not exist. Of the existing kinematic and plantar pressure data, few studies have collected data which reflects the real-life activities of infants with modern equipment. Methods This is a longitudinal study and part of the Great Foundations Initiative, a collaborative project between the University of Brighton and the University of Salford, which is seeking to improve foot health in children. Two cohorts of 50 infants will be recruited at the two sites (University of Brighton, Eastbourne, UK and University of Salford, Salford, UK). Infants will be recruited when they first reach for their feet and attend four laboratory visits at milestones related to foot loading, with experienced independent walking being the final milestone. Data collection will include tissue characteristics (skin thickness, texture, elasticity, pH and tendon thickness and cross-sectional area), plantar pressures and kinematics captured during real world locomotion tasks. Discussion This study will provide a database characterising the development of the infant foot as it becomes a weight bearing structure. The data will allow effective comparison and quantification of changes in structure and function due to maturation and loading by measuring pre and post established walking. Additional variables which impact on the development of the foot (gender, ethnicity and body weight) will also be factored into our analysis. This will help us to advance understanding of the determinants of foot development in early childhood
    • 

    corecore