5,151 research outputs found

    Mechanically driven growth of quasi-two dimensional microbial colonies

    Get PDF
    We study colonies of non-motile, rod-shaped bacteria growing on solid substrates. In our model, bacteria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient. We show that mechanical interactions control the velocity and shape of the advancing front, which leads to features that cannot be captured by established Fisher-Kolmogorov models. In particular, we find that the velocity depends on the elastic modulus of bacteria or their stickiness to the surface. Interestingly, we predict that the radius of an incompressible, strictly two-dimensional colony cannot grow linearly in time. Importantly, mechanical interactions can also account for the nonequilibrium transition between circular and branching colonies, often observed in the lab.Comment: 5 pages, 4 colour figure

    Activating KIR2DS4 Is Expressed by Uterine NK Cells and Contributes to Successful Pregnancy

    Get PDF
    Tissue-specific NK cells are abundant in the pregnant uterus and interact with invading placental trophoblast cells that transform the maternal arteries to increase the fetoplacental blood supply. Genetic case-control studies have implicated killer cell Ig-like receptor (KIR) genes and their HLA\textit{HLA} ligands in pregnancy disorders characterized by failure of trophoblast arterial transformation. Activating KIR2DS1\textit{KIR2DS1} or KIR2DS5\textit{KIR2DS5} (when located in the centromeric region as in Africans) lower the risk of disorders when there is a fetal HLA-C\textit{HLA-C} allele carrying a C2 epitope. In this study, we investigated another activating KIR, KIR2DS4\textit{KIR, KIR2DS4}, and provide genetic evidence for a similar effect when carried with KIR2DS1. KIR2DS4\textit{KIR2DS1. KIR2DS4} is expressed by ∼45% of uterine NK (uNK) cells. Similarly to KIR2DS1, triggering of KIR2DS4 on uNK cells led to secretion of GM-CSF and other chemokines, known to promote placental trophoblast invasion. Additionally, XCL1 and CCL1, identified in a screen of 120 different cytokines, were consistently secreted upon activation of KIR2DS4 on uNK cells. Inhibitory KIR2DL5A\textit{KIR2DL5A}, carried in linkage disequilibrium with KIR2DS1\textit{KIR2DS1}, is expressed by peripheral blood NK cells but not by uNK cells, highlighting the unique phenotype of uNK cells compared with peripheral blood NK cells. That KIR2DS4, KIR2DS1, and some alleles of KIR2DS5 contribute to successful pregnancy suggests that activation of uNK cells by KIR binding to HLA-C is a generic mechanism promoting trophoblast invasion into the decidua.This work was supported by the Wellcome Trust, the Centre for Trophoblast Research, the British Heart Foundation, and the Cambridge Philosophical Society

    Evolution of turbulent spots in a parallel shear flow

    Full text link
    The evolution of turbulent spots in a parallel shear flow is studied by means of full three-dimensional numerical simulations. The flow is bounded by free surfaces and driven by a volume force. Three regions in the spanwise spot cross-section can be identified: a turbulent interior, an interface layer with prominent streamwise streaks and vortices and a laminar exterior region with a large scale flow induced by the presence of the spot. The lift-up of streamwise streaks which is caused by non-normal amplification is clearly detected in the region adjacent to the spot interface. The spot can be characterized by an exponentially decaying front that moves with a speed different from that of the cross-stream outflow or the spanwise phase velocity of the streamwise roll pattern. Growth of the spots seems to be intimately connected to the large scale outside flow, for a turbulent ribbon extending across the box in downstream direction does not show the large scale flow and does not grow. Quantitatively, the large scale flow induces a linear instability in the neighborhood of the spot, but the associated front velocity is too small to explain the spot spreading.Comment: 10 pages, 10 Postscript figure

    Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry

    Full text link
    Wind-blown sand, or 'saltation,' creates sand dunes, erodes geological features, and could be a significant source of dust aerosols on Mars. Moreover, the electrification of sand and dust in saltation, dust storms, and dust devils could produce electric discharges and affect atmospheric chemistry. We present the first calculations of electric fields in martian saltation, using a numerical model of saltation that includes sand electrification, plasma physics, and the adsorption of ions and electrons onto particulates. Our results indicate that electric discharges do not occur in martian saltation. Moreover, we find that the production of hydrogen peroxide and the dissociation of methane by electric fields are less significant than previously thought. Both these species are highly relevant to studies of past and present life on Mars.Comment: 5 journal pages, 3 figures, published in Geophysical Research Letter

    Reflectance anisotropy spectroscopy of magnetite (110) surfaces

    Get PDF
    Reflectance anisotropy spectroscopy (RAS) has been used to measure the optical anisotropies of bulk and thin-film Fe3O4(110) surfaces. The spectra indicate that small shifts in energy of the optical transitions, associated with anisotropic strain or electric field gradients caused by the (110) surface termination or a native oxide layer, are responsible for the strong signal observed. The RAS response was then measured as a function of temperature. A distinct change in the RAS line-shape amplitude was observed in the spectral range from 0.8 to 1.6 eV for temperatures below the Verwey transition of the crystal. Finally, thin-film magnetite was grown by molecular beam epitaxy on MgO(110) substrates. Changes in the RAS spectra were found for different film thickness, suggesting that RAS can be used to monitor the growth of magnetite (110) films in situ. The thickness dependence of the RAS is discussed in terms of various models for the origin of the RAS signal

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition

    Get PDF
    We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through stretched exponential decay and two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wavenumber dependence of the kinetics is extensively explored. The connection of our results with experiment, mode coupling theory, and molecular dynamics results is discussed.Comment: 34 Pages, Plain TeX, 12 PostScript Figures (not included, available on request

    Fractal Stability Border in Plane Couette Flow

    Full text link
    We study the dynamics of localised perturbations in plane Couette flow with periodic lateral boundary conditions. For small Reynolds number and small amplitude of the initial state the perturbation decays on a viscous time scale tRet \propto Re. For Reynolds number larger than about 200, chaotic transients appear with life times longer than the viscous one. Depending on the type of the perturbation isolated initial conditions with infinite life time appear for Reynolds numbers larger than about 270--320. In this third regime, the life time as a function of Reynolds number and amplitude is fractal. These results suggest that in the transition region the turbulent dynamics is characterised by a chaotic repeller rather than an attractor.Comment: 4 pages, Latex, 4 eps-figures, submitted to Phys. Rev. Le

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet
    corecore