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Mechanically driven growth of quasi-two dimensional microbial colonies

F. D. C. Farrell1, O. Hallatschek2,3, D. Marenduzzo1, B. Waclaw1

1SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK
2MPI for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Göttingen, Germany

3Department of Physics, University of California, Berkeley, CA 94720, USA

We study colonies of non-motile, rod-shaped bacteria growing on solid substrates. In our model, bac-
teria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing
nutrient. We show that mechanical interactions control the velocity and shape of the advancing front,
which leads to features that cannot be captured by established Fisher-Kolmogorov models. In particular,
we find that the velocity depends on the elastic modulus of bacteria or their stickiness to the surface. In-
terestingly, we predict that the radius of an incompressible, strictly two-dimensional colony cannot grow
linearly in time. Importantly, mechanical interactions can also account for the nonequilibrium transition
between circular and branching colonies, often observed in the lab.

PACS numbers: 87.18.Hf, 87.18.Fx, 87.10.-e

Active matter, which constantly takes energy from its en-
vironment in order to do work [1], has recently attracted
much interest. Particular examples are collections of cells
such as tissues and suspensions of swimming bacteria [2–
4], and microbial colonies, in which activity is caused by
growth, death and migration of cells. The combination
of these three factors has been shown to lead to a vari-
ety of interesting and universal patterns [5–8]. For exam-
ple, bacteria such as B. subtilis or E. coli grown on Petri
dishes form patterns ranging from circular, through Eden-
like [9], to diffusion-limited aggregation-like patterns [10].
Such patterns have been traditionally modelled using a
system of diffusive Fisher-Kolmogorov equations [11, 12]
which combine migration (diffusion of bacteria), bacterial
growth, and nutrient diffusion. This approach, however,
does not accurately represent the growth on surfaces on
the microscopic level, where expansion is caused by cells
pushing each other out of the way as they grow, rather than
by migration.

In this paper, we study the role of mechanical interac-
tions between cells in the growth of dense colonies on solid
substrates. Inspired by recent experiments in microflu-
idic devices [13], we study a simple problem of quasi-
two dimensional growth of a colony of non-motile single-
celled organisms which consume nutrient in order to grow
and divide. We argue – supported by computer simula-
tions and analytical calculations – that mechanical interac-
tions between bacterial cells can account for the emergence
of a nonequilibrium transition between quasi-circular and
branched colonies as a function of the ratio between the
nutrient consumption rate and the growth rate. An ef-
fectively density-dependent consumption rate, postulated
in the Fisher equation framework [12], arises naturally in
our model due to compressibility of cells or their escape
into the third dimension (forming multiple layers). The
strength of mechanical interactions determines the speed
with which the colony expands in space, with diffusion of
the nutrient playing a secondary role. We also show that
the leading edge of the front is very sharp, and the bacte-
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FIG. 1: Top panel: snapshots from the simulation of N ∼ 105

cells, for low (A) and high (B) values of the branching parameter
β. Colours correspond to the local nutrient concentration, see the
the colormap on the right. Only a thin layer of cells (green) grows
appreciably. Middle panel: growth in a narrow, long strip, for low
(C) and high (D) β; only the growing layer is shown. The frame
is co-moving with the front. Bottom panel: roughness of the front
as a function of β, for cells with maximal aspect ratio 4:1 (blue,
E. coli-like) and 2:1 (red, S. cerevisiae-like). See Supplemetal
Material for typical parameter values used.

rial density is discontinuous at the front, in contrast to a
smooth, exponential profile predicted by models based on
coupled Fisher equations [8, 12]. Our results are relevant
to the growth of biofilms [14–16], which are ubiquitous in
nature and are involved in a variety of medical and techno-
logical problems. As mechanical interactions may alter the
colony morphology, and the fixation probability of (poten-
tially harmful) mutants [17, 18], understanding their role is
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of paramount importance.
We simulate bacteria using two-dimensional Newtonian

dynamics. Cells are modelled as growing spherocylinders
of constant diameter d = 1µm and variable length that split
in half to yield two cells when they reach some critical size
(which varies slightly from cell to cell). The colony grows
on a two-dimensional flat surface with nutrient concen-
tration c(x, y). The nutrient diffuses with diffusion con-
stant D. Nutrients are consumed at a rate kf(c) per unit
biomass density, where f(c) is a monotonously increasing
dimensionless function of c. In most simulations, we use
a Monod function c/(chalf + c) with half-saturation con-
stant chalf . Cells grow (by elongation) at a rate φf(c). The
typical values of all parameters are detailed in the Supple-
mental Material.

The cells interact mechanically in a similar way to that
of Ref. [13, 19]. The force between overlapping bacteria
is assumed to be given by the Hertzian theory of elastic
contact [20]: F = Ed1/2h3/2 where h is the overlap and
E parametrizes the strength of the interaction and is pro-
portional (modulo a dimensionless prefactor) to the elastic
modulus of the cells. We also assume that the dynamics is
overdamped so that the velocity of a cell is proportional to
the force exerted on it (see Supplemental Material).

We start our simulations from either a single initial cell
or a line of cells, and follow the shape of the colony af-
ter many rounds of cell replication, leading to a circular
colony or a horizontal advancing front, respectively. Fig-
ure 1 shows that the morphology of a large colony of bac-
teria can be either smooth or branched, depending on the
parameters of the model.

By performing simulations for different parameter sets
we have found that the fate (smooth/branched) of the
colony is determined by a dimensionless “branching pa-
rameter” β = (kρ0)/(φc0), where c0 is the initial nutrient
concentration, ρ0 the densely-packed cell density, and the
other parameters have been defined previously.

For small values of β, the front of the colony remains
smooth throughout the simulation (Fig. 1A,C), whereas for
large values branches develop (Fig. 1B,D). Note that, as
in real colonies [17], the nutrient becomes depleted within
the colony so that only cells in a thin layer at the front are
growing. To pinpoint the location of the transition more ac-
curately, we compute the roughness of the front (Fig. 1E),
defined as the mean square deviation of points on the front
from its average position, as in Ref. [6]. The roughness
measured at steady state increases by over an order of mag-
nitude as β passes through 1.0. The transition between pla-
nar and branching front is largely independent of the aspect
ratio of the cells (Fig. 1E).

This transition between branched and smooth colony
fronts is well known in real colonies [21], and has been the
subject of many theoretical studies [8, 12], which usually
attribute it to the interplay between diffusion (migration) of
bacteria and diffusion of the nutrient. In our model, how-
ever, the transition is driven by the uptake of nutrient by

the cells and their growth by mechanical pushing, and is
unaffected by the diffusion rate of the nutrient.

To gain a better understanding of the physics of this tran-
sition, we approximate the growing colony as an incom-
pressible cellular “fluid” [31]. Mass conservation in such
a fluid is described by the equation ∇ · v = φf(c(x)),
where v the fluid velocity, φ is the growth rate, and f(c)
is the dimensionless nutrient uptake function. This is cou-
pled to an equation describing the diffusion and depletion
of the nutrient. Let us begin with a one dimensional case
of a colony advancing from the left and characterized by a
single number x0(t) which is the position of the front:

∂tc(x, t) = D∂2
xc(x, t)− kρ0f(c(x, t))Θ(x0 − x),(1)

v(x0) =
dx0

dt
= φ

∫ x0(t)

−∞
f(c(x, t))dx. (2)

Here D is the nutrient diffusion constant, k the rate of up-
take of nutrient by cells, ρ0 the cell density (constant ev-
erywhere due to incompressibility), and Θ is the Heav-
iside step function. Because cells do not migrate and
they are tightly packed, the density is either ρ0 or zero,
and hence equation (2) can be derived from the continu-
ity equation and the incompressibility condition, assuming
that ρ(x, t) = ρ0Θ(x0(t)− x). We also impose boundary
conditions that c(−∞) = 0 and c(∞) = c0.

We first determine whether Eqs. (1,2) admit a travelling-
wave solution c(x, t) = ĉ(x − vt) ≡ ĉ(z) in the limit
t → ∞, where the velocity v of the front is constant. The
resulting equations for ĉ(z) and the front velocity v are

− vĉ′(z) = Dĉ′′(z)− kρ0f(ĉ)Θ(−z), (3)

v = φ

∫ 0

−∞
f(ĉ(z))dz. (4)

For z > 0, it is easily seen that the solution to Eq. (3)
is given by ĉ(z) = c0 + Ae−vz/D (as c(∞) = c0).
For z < 0, we can rearrange the equation to yield
f(ĉ(z)) = 1

kρ0
(Dĉ′′(z) + vĉ′(z))), which, upon inser-

tion into Eq. (4) gives

v =
φ

kρ0
(Dĉ′(0) + vĉ(0)) =

φc0
kρ0

v, (5)

where we have integrated by parts, and used the fact that
ĉ vanishes at −∞, and that ĉ and ĉ′ must be continu-
ous at z = 0. Therefore, a solution for v exists only if
φc0 = kρ0 (or β = 1) exactly: we have found that in the
incompressible limit the front cannot advance at a constant
speed! This is in contrast to the Fisher framework, where
travelling waves exist for a range of parameters. Numeri-
cal solutions of Eqs. (1, 2) fully confirm our prediction, see
Supplemental Material.

The hint from this simplified 1D model is therefore that
β = 1 is a critical value that separates different regimes
of colony growth. For β > 1, growth is limited by the
nutrient diffusion rate, whereas for β < 1 diffusion does
not play any role. However, there are two problems here.
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FIG. 2: Steady state speed of colony growth, v, as a function of
various parameters, for 2D simulations in the quasi-1D geometry.
A and B have fits to a square root function. In B, φ is varied while
holding β constant (by varying k). C shows the dependence on
β, with a change in behaviour around β = 1.

First, the front has more freedom in 2D than in 1D - it can
become branched and the profile does not have to be circu-
larly symmetric. Since this change occurs around β = 1, it
is therefore appealing to conjecture that the morphological
transition in Fig. 1 is linked to the switch in growth laws
described above in the theory for an incompressible colony.

Second, incompressible theory predicts that under no
conditions can growth be linear, unless β = 1. This is
inconsistent with experimental results: the size of a colony
of non-swimming bacteria growing on stiff agar gels does
increase linearly with time [22]. Moreover, our simulations
also lead to a finite steady state speed. The speed found in
simulations depends on the elasticity E, as can be seen in
Fig. 2A, suggesting the compressibility of the cells is im-
portant.

Generalizing the theory above to compressible cells, we
now need equations for mass and momentum conservation,
as well as the nutrient diffusion equation, still in the 1D
geometry:

∂tc = D∂2
xc− kρf(c), (6)

∂tρ+ ∂x(ρv) = φρf(c), (7)
∂xp = −µρv. (8)

The term µρv describes the friction between the surface
and the cells. The pressure p(ρ) is determined by the force
acting between the cells. We take p(ρ(x)) = E(1 −
ρ0/ρ(x))3/2 to be consistent with our simulations, because
the force that acts between two overlapping cells is then
proportional to Ed1/2h3/2, where h = d(1− ρ0/ρ(x)) is
the overlap.

Although Eqs. (6-8) cannot be solved analytically, a nu-
merical solution (see Supplemental Material) shows that a
travelling wave now exists for β < 1. The density pro-
file close to the edge decays according to a power law to-
wards the uncompressed cell density ρ0. This power law
decay and the finite density at the very edge are in strik-
ing contrast to Fisher-Kolomogorov waves, which exhibit
exponential density profiles in the wave tip [12]. Many
other properties of the solution to Eqs. (6-8) can be de-
duced without solving the equations. First, a “biomass con-
servation law” from Eqs. (6) and (7) states that one unit
of nutrient biomass makes φ/k units of bacterial biomass,
and hence the density ρ(−∞) deep in the colony must be

φc0/k. This explains why a travelling wave solution can-
not exist in the incompressible case: unless the cell den-
sity ρ0 equals exactly φc0/k it will not match the density
of biomass produced by the nutrient. It also explains why
there is a morphological transition to branched colonies at
β ' 1: growth of a flat front is not possible for β > 1 as it
would need to have a density less than ρ0. Finally, it sug-
gests that if bacteria are restricted to grow as a monolayer,
then, when nutrient is abundant, they will grow exponen-
tially until intermicrobial forces within the colony are so
large that the bacteria in the middle are squashed to the ap-
propriate density ρ0/β.

The idea that the cell population has to be compressed
to a normal strain of ε ≡ 1 − β for the front to grow at
a constant speed can be turned into a simple scaling argu-
ment. At steady state the pressure profile has to rise from 0
at the edge of the population to a maximal value p∗ in the
bulk within a boundary layer of characteristic size λ. The
characteristic length λ can be eliminated by estimating it
to be the length by which the front moves in one gener-
ation λ ≈ v/(φf(c0)). The bulk value of the pressure
p∗(ε) is just large enough that the density of the popula-
tion is compressed down to the strain ε. The elastic consti-
tutive relation p∗(ε) of the microbial population fixes the
corresponding pressure, with p∗(ε) = Eε3/2 in our case
of Hertzian contacts between cells. The pressure p∗ pushes
the front population at the speed v against the friction force
vµρ0λ, where µρ0 acts as a friction coefficient per unit
length. Force balance thus yields

v ≈
√
φf(c0)p∗(ε)

µρ0
=

√
Eφf(c0)

µρ0
g(β), (9)

where g(β) = (1− β)3/4.
To test the above formula, we performed a fully one-

dimensional version of our simulations described above, as
this removed the effects of branching and was much more
computationally efficient. The results are shown in Fig. 3.
Figure 3A shows that the front speed grows as

√
E as pre-

dicted by Eq. (9), and Fig. 3B shows that the dependence
of v on β is in good agreement with the numerically and
theoretically predicted g(β), although the theoretical form
g(β) = (1 − β)3/4 is only accurate for β close to 1. Fig.
2 shows that the square-root dependence on E and φ also
holds in the 2D case, but the function g(β) is again differ-
ent, and does not go to zero for β > 1, due to the branch-
ing. In the Supplemental Material we perform a more rig-
orous derivation of Eq. (9), showing that it is valid when
the dimensionless parameter G = E/(µDρ0) � 1 and
β is close to 1. We also show that mechanics-dominated
growth G � 1 is relevant for any experimentally feasible
parameters.

So far, our findings are relevant to bacteria growing in
monolayers. On agar plates, however, cells are observed
to build up vertically in the colony centre [23, 24]. To
probe how this additional degree of freedom affects our re-
sults, we simulate a colony growing in a vertical 2d plane
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FIG. 3: Dependence of front speed on parameters in the fully 1D
simulation. A: front speed as a function of repulsion strength E,
with fit to v = A

√
E. B: Transition from moving to stopped front

as a function of β, which occurs when β = 1. v/
√
φ is plotted

against β (by varying k) for φ = 10 (open circles), 20 (triangles)
and 30 (closed circles), showing that v ∼

√
φg(β). Here E =

4 × 106, D = 100. Solid line corresponds to theoretical g(β) =
(1 − β)3/4, and red (grey) circles are the numerical solution of
Eqs. (6-8). Inset: v as a function of D, showing no dependence.
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FIG. 4: 3D colony growth. A: snapshot. B: Speed of radial
colony growth against φ, with fit to A

√
φ. C-E: speed against

k, E and D (for φ = 10), showing little dependence on any of
these parameters.

xz (where the z axis is perpendicular to the substrate) in-
stead of the xy plane from previous simulation. We also
incorporate attractive cell-cell and cell-substrate interac-
tions, and we solve for the evolution of the nutrient field
in the z < 0 half-plane only, which models the agar gel on
which growth occurs. As is apparent from the snapshot of
the growth process in Fig. 4A, cells do now escape out of
the plane they start from, due to the force exerted by neigh-
bours. The size of the colony once again grows linearly in
time. However, it is not compressibility but the possibility
of escape into the vertical direction which leads to linear
growth.

In fact, if the bulk pressure p∗(ε), which builds up
in a strictly two-dimensional setting, is larger than some
critical pressure pc, cells will escape into the z dimen-
sion. As a consequence the pressure profile will saturate
at pc in the bulk of the population. In our scaling ar-
gument for the speed of the front growth, we then have
v ≈ [(φf(c0)pc)/(µρ0)]

1/2. Figures 4B-E show that, in
contrast to the 2D case, the expansion speed v ∼ √φ and
it is independent of the consumption rate k, elastic mod-
ulus E and the diffusion constant D. Note that while the

radial growth is independent of k, the vertical growth will
be affected by it.

In conclusion, we have reported here a joint compu-
tational and analytical study of the growth of bacterial
colonies where non-motile microorganisms replicate and
push each other away as they grow. We find a transition be-
tween two different growth regimes, controlled by the bal-
ance between growth and uptake of nutrients. Our model
differs in that from biofilm simulations [25, 26] which do
not explicitly model mechanical forces in the colony. We
also find that the functional form of the density profile close
to the bacterial edge qualitatively differs from those pre-
dicted by Fisher-Kolmogorov models, and predict that the
speed at which the front propagates depends only weakly
on the nutrient diffusion rate D, for a wide range of D.
It would be interesting to study how the accumulation of
metabolic inhibitors [27], oxygen depletion [28], or depen-
dence of growth rate on the distance from the agar [29]
would affect our results.
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