376 research outputs found

    Hadronic light-by-light scattering contribution to the muon g-2

    Full text link
    We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contribution to the g-2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-N_C QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints, in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g-2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result a_{\mu}(LbyL; had) = (116 \pm 40) x 10^{-11}, with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate a_{e}(LbyL; had) = (3.9 \pm 1.3) x 10^{-14}.Comment: 6 pages, 1 figure, to be published in the proceedings of the PhiPsi09 workshop, Oct. 13-16, 2009, Beijing, Chin

    The electroweak chiral Lagrangian reanalyzed

    Get PDF
    In this paper we reanalyze the electroweak chiral Lagrangian with particular focus on two issues related to gauge invariance. Our analysis is based on a manifestly gauge-invariant approach that we introduced recently. It deals with gauge-invariant Green's functions and provides a method to evaluate the corresponding generating functional without fixing the gauge. First we show, for the case where no fermions are included in the effective Lagrangian, that the set of low-energy constants currently used in the literature is redundant. In particular, by employing the equations of motion for the gauge fields one can choose to remove two low-energy constants which contribute to the self-energies of the gauge bosons. If fermions are included in the effective field theory analysis the situation is more involved. Even in this case, however, these contributions to the self-energies of the gauge bosons can be removed. The relation of this result to the experimentally determined values for the oblique parameters S, T, and U is discussed. In the second part of the paper we consider the matching relation between a full and an effective theory. We show how the low-energy constants of the effective Lagrangian can be determined by matching gauge-invariant Green's functions in both theories. As an application we explicitly evaluate the low-energy constants for the standard model with a heavy Higgs boson. The matching at the one-loop level and at next-to-leading order in the low-energy expansion is performed employing functional methods.Comment: 44 pages, Revtex. v2: Sections II and III interchanged. New section II now self-contained. Discussions improved in sections I, II, V.C and VI. Conclusions unchanged. Published versio

    Status of KLOE-2

    Full text link
    In a few months the KLOE-2 detector is expected to start data taking at the upgraded DAΦ\rm{\Phi}NE ϕ\phi-factory of INFN Laboratori Nazionali di Frascati. It aims to collect 25 fb1^{-1} at the ϕ(1020)\phi(1020) peak, and about 5 fb1^{-1} in the energy region between 1 and 2.5 GeV. We review the status and physics program of the projectComment: 6 pages, 5 figures, to appear in the Proceedings of the PHIPSI09 Workshop, Oct 13-16, 2009, Beijing, Chin

    Gauge-invariant Green's functions for the bosonic sector of the standard model

    Get PDF
    There are many applications in gauge theories where the usually employed framework involving gauge-dependent Green's functions leads to considerable problems. In order to overcome the difficulties invariably tied to gauge dependence, we present a manifestly gauge-invariant approach. We propose a generating functional of appropriately chosen gauge-invariant Green's functions for the bosonic sector of the standard model. Since the corresponding external sources emit one-particle states, these functions yield the same S-matrix elements as those obtained in the usual framework. We evaluate the generating functional for the bosonic sector of the standard model up to the one-loop level and carry out its renormalization in the on-shell scheme. Explicit results for some two-point functions are given. Gauge invariance is manifest at any step of our calculation.Comment: 29 pages, Revtex. v2: Discussions improved, conclusions unchanged. Some references added. v3: Published versio

    Theoretical precision in estimates of the hadronic contributions to (g-2)_mu and alpha_QED(M_Z)

    Full text link
    I review recent estimates of the non-perturbative hadronic vacuum polarization contributions. Since these at present can only be evaluated in terms of experimental data of limited precision, the related uncertainties pose a serious limitation in our ability to make precise predictions. Besides e+e- - annihilation data also tau decay spectra can help to get better predictions. Here, it is important to account for all possible iso-spin violations in tau - decay spectra, from which e+e- cross sections may be obtained by an iso-spin rotation. The observed 10% discrepancy in the region above the rho may be understood as a so far unaccounted iso-spin breaking effect.Comment: 10 pages, 2 tables, 4 figure

    New results on the hadronic vacuum polarization to the muon g-2

    Full text link
    Results on the lowest-order hadronic vacuum polarization contribution to the muon magnetic anomaly are presented. They are based on the latest published experimental data used as input to the dispersion integral. Thus recent results on tau to nutau pi pi0 decays from Belle and on e+ e- annihilation to pi+ pi- from BABAR and KLOE are included. The new data, together with improved isospin-breaking corrections for tau decays, result into a much better consistency among the different results. A discrepancy between the Standard Model prediction and the direct g-2 measurement is found at the level of 3 sigma.Comment: proceedings of the PhiPsi09 conference, Oct. 13-16, 2009, Beijing, Chin

    Contributions of semi-hadronic states Pγ;Sγ,π+πγP\gamma;S\gamma, \pi^+\pi^-\gamma to amm of muon, in frames of Nambu-Jona-Lasinio model

    Full text link
    We calculate the contribution of semi-hadronic states with pseudoscalar P=π0,ηP=\pi^0, \eta and scalar (σ\sigma(550))meson accompanied with real photon as an intermediate state of a heavy photon to the anomalous magnetic moment of muon. We consider the intermediate states with π0\pi_0 and σ\sigma as a hadrons in frames of Nambu-Jona-Lasinio model. The contribution of π0γ\pi_0\gamma state is in agreement with results obtained in previous theoretical considerations as well as with experimental data aμπ0γ4.5×1010a_\mu^{\pi_0\gamma}\approx 4.5 \times 10^{-10}, besides we estimate aμηγ=0.7×1010,aμσγ1.5×1011,aμπ+πγ3.2×1010.a_{\mu}^{\eta\gamma}=0.7 \times 10^{-10}, a_{\mu}^{\sigma\gamma} \sim 1.5 \times 10^{-11}, a_{\mu}^{\pi^+\pi^-\gamma} \sim 3.2 \times 10^{-10}. We discass as well the LbL mechanism with aμlbl=10.51010.a_{\mu}^{lbl}=10.5 \cdot 10^{-10}.Comment: 6 pages, 2 figure

    Infraglenoidal scapular notching in reverse total shoulder replacement: a prospective series of 60 cases and systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impact of infraglenoidal scapular notching in reversed total shoulder arthroplasty (RTSA) is still controversially discussed. Our goal was to evaluate its potential influence on subjective shoulder stability and clinical outcome. We hypothesized that subjective instability and clinical outcome after implantation of RTSA correlates with objective scapular notching.</p> <p>Methods</p> <p>Sixty shoulders were assessed preoperatively and at minimum 2-year follow-up for active range of motion and by use of the Oxford instability score, Rowe score for instability, Constant score for pain, Constant shoulder score, DASH score. All shoulders were evaluated on anterior-posterior and axillary lateral radiographic views. These X-ray scans were classified twice by two orthopaedic surgeons with respect to infraglenoidal scapular notching according to the classification of Nerot. Notching was tested for correlation with clinical outcome scores to the evaluated notching.</p> <p>Results</p> <p>We found no significant correlation between infraglenoidal scapular notching and clinical outcomes after a mid-term follow-up from 24 to 60 months, but at the final follow-up of 60 months and more, we did see statistically significant, positive correlations between infraglenoidal scapular notching and the Constant pain score as well as active range of motion. At mean follow-up of 42 months (range from 24 to 96 months) we found no significant correlation between subjective instability and infraglenoidal scapular notching.</p> <p>Conclusions</p> <p>We conclude that patients' subjective impression on their shoulders' stability is not correlating with radiological signs of infraglenoidal scapular notching. Nevertheless clinical parameters are affected by infraglenoidal scapular notching, at least in the long term</p

    Brane fluctuation and the electroweak chiral Lagrangian

    Full text link
    We use the external field method to study the electroweak chiral Lagrangian of the extra dimension model with brane fluctuation. Under the assumption that the contact terms between the matters of the standard model and KK excitations are heavily suppressed, we use the standard procedure to integrate out the quantum fields of KK excitations and the equation of motion to eliminate the classic fields of KK excitations. At one-loop level, we find that up to the order O(p4)O(p^4), due to the momentum conservation of the fifth dimension and the gauge symmetry of the zero modes, there is no constraint on the size of extra dimension. This result is consistent with the decoupling theorem. However, meaningful constraints can come from those operators in O(p6)O(p^6), which can contribute considerably to some anomalous vector couplings and can be accessible in the LC and LHC.Comment: Revised version, 20 pages in ReVTeX, to appear in PR
    corecore