558 research outputs found
Spitzer White Dwarf Planet Limits
We present preliminary limits on the presence of planets around white dwarf
stars using the IRAC photometer on the Spitzer space telescope. Planets emit
strongly in the mid-infrared which allows their presence to be detected as an
excess at these wavelengths. We place limits of for 8 stars assuming
ages of , and for 23 stars.We describe our survey, present our
results and comment on approaches to improve our methodology.Comment: 4 pages, 3 figures, to appear in Proceedings of 15th European White
Dwarf Worksho
Recommended from our members
A Status Report On A Planet Search Around White Dwarf Stars
We have continued monitoring a pilot sample of 15 isolated, pulsating DA white dwarfs for center-of-mass motion caused by a planetary companion. Roughly 7 years into our survey, we have preliminary evidence for periodic variations in pulse arrival times for at least two white dwarfs in our sample. The variations in these systems are unlikely to be caused by secular evolution and are possibly the result of motion of the white dwarf around a center of mass. We have yet to claim confirmation of a planet. GD66 is a previously published candidate system, with a modulation in pulse arrival times that could be caused by a 2.0 M-J sin i planetary companion with an 8.3 year orbital period. Another candidate system, WD1354+0108, has a phase modulation consistent with a 0.7 M-J sin i planet at 2.3 AU (a 4.5 year orbit). We see similar behavior in two independent frequencies within this star, and while a sinusoid is currently a marginally better fit to the data than a straight line (as we might expect from cooling alone in a DAV), we are hesitant to over-interpret our results. Finally, we have a third system, WD0018+0031, that shows a change in pulse arrival times inconsistent with cooling alone; a 2.7 M-J planet at an orbit of about 5 AU could cause the observed trend. Observations of these candidate systems are ongoing in order to constrain any planetary companions that may be present.Astronom
Nonlinear asteroseismology of RR Lyrae
The observations of the Kepler space telescope revealed that fundamental-mode
RR Lyrae stars may show various radial overtones. The presence of multiple
radial modes may allow us to conduct nonlinear asteroseismology: comparison of
mode amplitudes and frequency shifts between observations and models. Here we
report the detection of three radial modes in the star RR Lyr, the eponym of
the class, using the Kepler short cadence data: besides the fundamental mode,
both the first and the ninth overtones can be derived from the data set. RR
Lyrae shows period doubling, but switches occasionally to a state where a
pattern of six pulsation cycles repeats instead of two. We found hydrodynamic
models that show the same three modes and the period-six state, allowing for
comparison with the observations.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letter
Planetary Candidates Observed by Kepler. VI. Planet Sample from Q1--Q16 (47 Months)
We present the sixth catalog of Kepler candidate planets based on nearly four years of high precision photometry. This catalog builds on the legacy of previous catalogs released by the Kepler project and includes 1493 new Kepler Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these candidates have best-fit radii > 1.5 R_⊕. This brings the total number of KOIs and planet candidates to 7348 and 4175 respectively. We suspect that many of these new candidates at the low signal-to-noise ratio limit may be false alarms created by instrumental noise, and discuss our efforts to identify such objects. We re-evaluate all previously published KOIs with orbital periods of > 50 days to provide a consistently vetted sample that can be used to improve planet occurrence rate calculations. We discuss the performance of our planet detection algorithms, and the consistency of our vetting products. The full catalog is publicly available at the NASA Exoplanet Archive
A Spitzer White Dwarf Infrared Survey
We present mid-infrared photometry of 124 white dwarf stars with Spitzer Space Telescope. Objects were observed simultaneously at 4.5 and 8.0um with sensitivities better than 1 mJy. This data can be used to test models of white dwarf atmospheres in a new wavelength regime, as well as to search for planetary companions and debris disks
Mode Identification from Combination Frequency Amplitudes in ZZ Ceti Stars
The lightcurves of variable DA stars are usually multi-periodic and
non-sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies
of the pulsation modes and at sums and differences of these frequencies. These
combination frequencies provide extra information about the pulsations, both
physical and geometrical, that is lost unless they are analyzed. Several
theories provide a context for this analysis by predicting combination
frequency amplitudes. In these theories, the combination frequencies arise from
nonlinear mixing of oscillation modes in the outer layers of the white dwarf,
so their analysis cannot yield direct information on the global structure of
the star as eigenmodes provide. However, their sensitivity to mode geometry
does make them a useful tool for identifying the spherical degree of the modes
that mix to produce them. In this paper, we analyze data from eight hot,
low-amplitude DAV white dwarfs and measure the amplitudes of combination
frequencies present. By comparing these amplitudes to the predictions of the
theory of Goldreich & Wu, we have verified that the theory is crudely
consistent with the measurements. We have also investigated to what extent the
combination frequencies can be used to measure the spherical degree (ell) of
the modes that produce them. We find that modes with ell > 2 are easily
identifiable as high ell based on their combination frequencies alone.
Distinguishing between ell=1 and 2 is also possible using harmonics. These
results will be useful for conducting seismological analysis of large ensembles
of ZZ Ceti stars, such as those being discovered using the Sloan Digital Sky
Survey. Because this method relies only on photometry at optical wavelengths,
it can be applied to faint stars using 4 m class telescopes.Comment: 73 pages, 22 figures, accepted in the Ap
A dense disk of dust around the born-again Sakurai's object
In 1996, Sakurai's object (V4334 Sgr) suddenly brightened in the centre of a
faint Planetary Nebula (PN). This very rare event was interpreted as the
reignition of a hot white dwarf that caused a rapid evolution back to the cool
giant phase. From 1998 on, a copious amount of dust has formed continuously,
screening out the star which has remained embedded in this expanding high
optical depth envelope. The new observations, reported here, are used to study
the morphology of the circumstellar dust in order to investigate the hypothesis
that Sakurai's Object is surrounded by a thick spherical envelope of dust. We
have obtained unprecedented, high-angular resolution spectro-interferometric
observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the
dust envelope of Sakurai's object. We report the discovery of a unexpectedly
compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc),
highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations
of a stratified disk to constrain its geometric and physical parameters,
although such a model is only a rough approximation of the rapidly evolving
dust structure. Even though the fits are not fully satisfactory, some useful
and robust constraints can be inferred. The disk inclination is estimated to be
75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk
is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3
degree) is aligned with an asymmetry seen in the old PN that was
re-investigated as part of this study. This implies that the mechanism
responsible for shaping the dust envelope surrounding Sakurai's object was
already at work when the old PN formed.Comment: A&A Letter, accepte
Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations
Context: The Kepler space mission is reaching continuous observing times long
enough to start studying the fine structure of the observed p-mode spectra.
Aims: In this paper, we aim to study the signature of stellar evolution on the
radial and p-dominated l=2 modes in an ensemble of red giants that show
solar-type oscillations. Results: We find that the phase shift of the central
radial mode (eps_c) is significantly different for red giants at a given large
frequency separation (Dnu_c) but which burn only H in a shell (RGB) than those
that have already ignited core He burning. Even though not directly probing the
stellar core the pair of local seismic observables (Dnu_c, eps_c) can be used
as an evolutionary stage discriminator that turned out to be as reliable as the
period spacing of the mixed dipole modes. We find a tight correlation between
eps_c and Dnu_c for RGB stars and no indication that eps_c depends on other
properties of these stars. It appears that the difference in eps_c between the
two populations becomes if we use an average of several radial orders, instead
of a local, i.e. only around the central radial mode, Dnu to determine the
phase shift. This indicates that the information on the evolutionary stage is
encoded locally, in the shape of the radial mode sequence. This shape turns out
to be approximately symmetric around the central radial mode for RGB stars but
asymmetric for core He burning stars. We computed radial modes for a sequence
of RG models and find them to qualitatively confirm our findings. We also find
that, at least in our models, the local Dnu is an at least as good and mostly
better proxy for both the asymptotic spacing and the large separation scaled
from the model density than the average Dnu. Finally, we investigate the
signature of the evolutionary stage on the small frequency separation and
quantify the mass dependency of this seismic parameter.Comment: 12 pages, 9 figures, accepted for publication in A&
- …
