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ABSTRACT

The lightcurves of variable DA stars are usually multi-periodic and non-

sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies of

the pulsation modes and at sums and differences of these frequencies. These

combination frequencies provide extra information about the pulsations, both

physical and geometrical, that is lost unless they are analyzed. Several theories

provide a context for this analysis by predicting combination frequency ampli-

tudes. In these theories, the combination frequencies arise from nonlinear mixing

of oscillation modes in the outer layers of the white dwarf, so their analysis can-

not yield direct information on the global structure of the star as eigenmodes

provide. However, their sensitivity to mode geometry does make them a useful

tool for identifying the spherical degree of the modes that mix to produce them.

In this paper, we analyze data from eight hot, low-amplitude DAV white dwarfs

and measure the amplitudes of combination frequencies present. By compar-

ing these amplitudes to the predictions of the theory of Goldreich and Wu, we

have verified that the theory is crudely consistent with the measurements. We

have also investigated to what extent the combination frequencies can be used

to measure the spherical degree (ℓ) of the modes that produce them. We find

that modes with ℓ > 2 are easily identifiable as high ℓ based on their combina-

tion frequencies alone. Distinguishing between ℓ = 1 and 2 is also possible using

harmonics. These results will be useful for conducting seismological analysis of

large ensembles of ZZ Ceti stars, such as those being discovered using the Sloan

Digital Sky Survey. Because this method relies only on photometry at optical

wavelengths, it can be applied to faint stars using four-meter class telescopes.
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Subject headings: stars: individual(GD 66, GD 244, G117-B15A, G185-32, L19-2,

GD 165, R548, G226-29) — stars: oscillations — stars: variables: other — white

dwarfs

1. INTRODUCTION

There are three known classes of pulsating white dwarf stars in three different insta-

bility strips: the pulsating PG 1159 stars at about 100,000 K, the DBV (He I spectrum,

variable) stars at 25,000 K, and the DAV (H) stars at 12,000 K. In spite of the differences

in temperature and surface composition, the pulsation periods and the appearance of the

lightcurves are similar. The DAV and DBV stars in particular (with periods between 100 and

1000 seconds), have distinctive non-sinusoidal variations at large amplitude, and more linear

behavior at small amplitude (McGraw 1980). As a consequence, the Fourier transforms of

DAV and DBV lightcurves generally show power at harmonics and at sum and difference

frequencies. These “combination frequencies” are not in general the result of independent

pulsation eigenmodes, but rather of frequency mixing between eigenmodes (Brickhill 1992b;

Goldreich & Wu 1999; Ising & Koester 2001; Brassard, Fontaine & Wesemael 1995). In

this paper, we will explore combination frequencies in the small amplitude DAV (ZZ Ceti)

white dwarf stars. The combination frequency peaks are smaller, and therefore harder to de-

tect, than the combination frequencies in large amplitude pulsators like G29-38, but they are

more stable, and therefore more likely to yield understandable and repeatable results. The

small amplitude DAVs are also the pulsators in which the origin of the combination frequen-

cies are most uncertain—they might arise from convective effects (Brickhill 1992b) or from

nonlinearities in the radiative flux alone, as proposed by Brassard, Fontaine & Wesemael

(1995).

The spectroscopic measurements of Greenstein (1976, 1982) showed that the ZZ Ceti

stars lie within a narrow range of effective temperatures, and Fontaine et al. (1982) reasoned

that most, if not all, DA white dwarfs are variables as they cool through this instability strip.

The low amplitude pulsators we consider in this paper lie at the high temperature end of

the instability strip, and have short, stable pulsation periods (Winget & Fontaine 1982;

Clemens 1994). The variations we observe arise from the temperature changes associated

with non-radial gravity-mode pulsations (Robinson et al. 1982). At some amplitude, these

pulsations will appear non-sinusoidal because of the T 4 dependence of the measured flux. The

combination frequencies that we measure in the low amplitude DAV white dwarfs discussed in

this paper are larger than those expected from the T 4 nonlinearity, and require an additional

nonlinear process in the surface layers of the white dwarf.



– 3 –

The first attempt to identify the nonlinear process was Brickhill (1983, 1990, 1991a,b,

1992a,b), who explored the time dependent properties of the surface convection zone. Using

a numerical model of the surface convection zone, Brickhill (1992a) calculated the first

non-sinusoidal theoretical shapes of ZZ Ceti lightcurves. In his model, the nearly isentropic

surface convection zone adjusts its entropy on short timescales, attenuating and delaying

any flux changes that originate at its base. As the convection zone changes thickness during

a single pulsation cycle, the amount of attenuation and delay changes as well, distorting

sinusoidal input variations and creating combination frequencies in the Fourier spectrum of

the output signal.

Goldreich & Wu (1999) repeated and expanded Brickhill’s work using an analytic

approach. Wu (2001, hereafter Wu) was able to derive approximate expressions for the

size of combination frequencies that depend upon the frequency, amplitude, and spherical

harmonic indices of the parent modes, and upon the inclination of the star’s pulsation axis to

our line of sight. Her solutions yield physical insight into the problem, and make predictions

for individual stars straightforward to calculate. Wu herself compared her calculations to

measured combination frequencies in the DBV GD 358 and the large-amplitude ZZ Ceti,

G29-38, finding good correspondence.

Subsequently, Ising & Koester (2001) extended the numerical simulations of lightcurves

of Brickhill (1992a,b), showing that for large amplitude pulsations (δP�P > 5%) the nu-

merical models must incorporate the time-dependence of quantities that are held constant in

the method of Brickhill (e.g., heat capacities). In these full time-dependent calculations, the

large amplitude variations begin to show maxima in locations different from those described

by the low-order spherical harmonics. However, for the small amplitude variations we con-

sider in this paper, this effect is negligible, and the numerical results of Ising & Koester

(2001) are in agreement with Brickhill (1992a,b) and Wu.

An entirely different model for explaining combination frequencies was proposed by

Brassard, Fontaine & Wesemael (1995, hereafter BFW). Instead of changes in the convection

zone, BFW invoke the nonlinear response of the radiative atmosphere, ignoring the changes to

the surface convection zone. These radiative nonlinearities can be larger than expected from

the T 4 dependence of flux because of the sensitivity of the H absorption lines to temperature.

Vuille & Brassard (2000) compared the predictions of this theory to those of Brickhill for

the large amplitude pulsator G29-38, and found that the combination frequencies in that

star are too large to be explained by the BFW theory. This does not necessarily invalidate

the theory, but suggests that some other mechanism is at work, at least in G29-38. Vuille

& Brassard (2000) left open the question of low amplitude pulsators, which have much

smaller combination frequencies. In one case at least (G117-B15A), the BFW theory was
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able to account for the amplitude of the combination frequencies (Brassard et al. 1993).

However, this success relied on an exact match between the spectroscopic temperature of the

star and a narrow maximum in the theoretical predictions. Using more recent spectroscopic

temperature estimates for G117-B15A, which differ from the old by only 850 K (see Bergeron

et al. 2004), the theory underestimates the combination frequency amplitudes by more than

an order of magnitude. In general, even for the low amplitude pulsators, the BFW theory

underestimates the sizes of combination frequencies by an order of magnitude or more.

In this paper we compare the analytic theory of Wu to observations of the hot, low-

amplitude ZZ Ceti stars GD 66, GD 244, G117-B15A, G185-32, L19-2, GD 165, R548,

and G226-29, to determine how well this theory reproduces the combination frequencies in

hot DAV stars. If they correctly describe and predict the behavior of DAV pulsations, the

analytical formulae of Wu will be an important tool for mode identification in ZZ Ceti stars.

Confidently assigning values of the spherical degree (ℓ) and azimuthal order (m) to individual

eigenfrequencies has heretofore required time-resolved spectroscopy using either very large

optical telescopes or the Hubble Space Telescope (Clemens, van Kerkwijk & Wu 2000;

Robinson et al. 1995). As Brickhill (1992b) first proposed, and BFW reiterated, a reliable

theory for combination frequency amplitudes allows pulsation mode identification based on

measurements of combination frequencies alone. Thus, if we can verify that the predictions

of Wu are consistent with observations, then they constitute an uncomplicated method of

mode identification that relies only upon broadband photometry rather than spectroscopy.

Moreover, the theory of Goldreich & Wu (and of Brickhill) implicitly contains a mode driving

mechanism different from that originally proposed for the DAV stars. Verification of the

analytical predictions of Wu will support this convective driving mechanism as the source of

pulsations in DAV stars.

For this paper, we have used published Fourier spectra, new reductions of archival Whole

Earth Telescope data, and original data obtained with the McDonald Observatory 2.1-m

Struve telescope to measure combination frequency amplitudes or amplitude limits for eight

hot DAV stars. We have applied our best estimates of the inclination of the pulsation axis to

the observer’s line of sight and compared the amplitudes of the combination frequencies to

the analytical calculations of Wu. We find that the theory reproduces the relative amplitudes

of combination frequencies in these stars very well, but over-predicts their absolute values by

a factor of about 1.4. The calculations of Wu include an adjustable parameterization of the

radiative atmosphere which can easily accommodate a factor this large. When we normalize

its value using the star in our sample with the most detected combination frequencies, GD

66, the theory reproduces all the observed ratios of combination frequency to parent mode

amplitudes to better than a factor of two. This is easily sufficient to verify the high ℓ

identification for modes in G185-32, as established by Thompson et al. (2004) using time-
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resolved spectroscopy from Keck and the Hubble Space Telescope. It is also sufficient in

many cases to distinguish between ℓ = 1 and ℓ = 2 by relying on mode harmonics. Based

on these results, we conclude that the theory of Wu, suitably calibrated, can function as a

mode identification method for at least the hot ZZ Ceti stars. This conclusion is important

because the follow-up photometry of ZZ Ceti candidates from the Sloan Digital Sky Survey

is finding large numbers of these pulsators that will be too faint for practical time-resolved

spectroscopic methods (see Mukadam et al. 2004; Mullally et al. 2005). Our results

suggest that time-series photometry on four-meter class telescopes, augmented with multiplet

splitting where available (e.g., Bradley 2005), will be sufficient to classify modes in these

stars.

We begin in §2 by summarizing the analytical expressions of Wu necessary for predicting

the amplitudes of combination frequencies. We also discuss our method for estimating the

inclination of the stars’ pulsation axes to the observer’s line of sight, and show that our

result is insensitive to error in this estimate. In §3 we present the data for each of the

eight stars individually and compare predictions based on Wu’s equations with the observed

amplitudes. In §4 we summarize our results and discuss future application of the technique,

emphasizing a prescription for applying the theory of Wu to large samples of ZZ Ceti stars.

2. THEORETICAL REVIEW

In this section, we will summarize Wu’s analytic model and explain how we apply her

theory, along with an independent estimation of the stellar inclination angle, to predict the

amplitudes of combination frequencies. Wu’s models rely upon an attenuation and a delay

of the perturbed flux within the convection zone to produce non-sinusoidal photospheric flux

variations. The differential equation describing these effects (Wu) is:

(

δF

F

)

b

= X + τc◦ [1 + (2β + γ)X ]
dX

dt
, (1)

where (δF�F )b is the assumed sinusoidal flux perturbation at the base of the convection

zone. X ≡ (δF�F )ph is the flux variation at the photosphere and is related to the photomet-

ric variations we observe. τc◦ is the time delay introduced by the convection zone. Physically

it represents the timescale over which the convection zone can absorb a flux change (by ad-

justing its entropy) instead of communicating it to the surface. In this paper we approximate

τc◦ by setting it equal to the longest observed mode period. This is a lower limit, because

modes with periods longer than τc◦ cannot be driven, but the longest observed period might

not be quite as large as τc◦ . β and γ are fixed parameterizations of the radiative region
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overlying the convection zone, and represent an attenuation of the flux. The mixing length

models of Wu & Goldreich (1999) yield β ∼ 1.2 and γ ∼ −15 in the temperature range of

ZZ Ceti stars (see their Figure 1).

The solution to equation 1 represents the detectable flux variation at the photosphere,

and has the assumed form:

(

δF

F

)

ph

= ai cos(ωit+ ψi) + a2i cos(2ωit+ ψ2i) + aj cos(ωjt+ ψj) + a2j cos(2ωjt+ ψ2j)

+ai−j cos[(ωi − ωj)t+ ψi−j ] + ai+j cos[(ωi + ωj)t + ψi+j ] + ... (2)

Solving equation 1 yields expressions for the amplitude coefficients (ai±j) and the phases

(ψi±j) at each combination frequency (ωi ± ωj). In this paper we do not consider phases

because they are impossible to recover from some of the published data, and difficult to

measure in the presence of noise. Thus we focus on the amplitudes represented by:

ai±j =
nij

2

aiaj

2

| 2β + γ | (ωi ± ωj)τc◦
√

1 + [(ωi ± ωj)τc◦ ]
2
, (3)

where nij = 2 for i 6= j and 1 otherwise.

These ai±j represent total flux amplitudes for the combination frequencies and are given

in terms of the total flux amplitudes of the parent modes (ai, aj). Because we measure an

integrated flux in a restricted wavelength range, these amplitudes are not analogous to the

ones we measure. However, they can be transformed into quantities like those we measure

by integrating over the appropriate spherical harmonic viewed at some inclination (Θ◦) in

the presence of an Eddington limb-darkening law, and then applying a bolometric correction

(αλ) appropriate for the detector and filter combination.

Calculating the integrated amplitude requires an expression for the flux in the presence

of limb darkening. For a parent mode, which is assumed to have the angular dependence of

a spherical harmonic, Wu gives:

gmℓ (Θ◦) ≡
1

2π

∮ 2π

0

dφ

∫ 0

π/2

Re[Y m
ℓ (Θ,Φ)]

(

1 +
3

2
cos(θ)

)

cos(θ)d cos(θ), (4)

where (θ, φ) are in the coordinate system defined by the observer’s line of sight, and (Θ,Φ)

are aligned to the pulsation axis of the star. These two coordinate systems are separated by
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the angle Θ◦, which is the inclination of the star. Evaluating this integral requires estimating

this inclination, and applying the appropriate coordinate transformation (see Appendix A

of Wu).

For the combination frequencies, the integrated flux depends on the product of the

spherical harmonics of the parent modes:

G
mi±mj

ℓi ℓj
(Θ◦) ≡

Nmi

ℓi
N

mj

ℓj

2π

∮ 2π

0

dφ

∫ 0

π/2

ρmi

ℓi
(Θ)ρ

mj

ℓj
(Θ) cos ((mi ±mj)Φ)×

(

1 +
3

2
cos(θ)

)

cos(θ)d cos(θ), (5)

where the ρmℓ (Θ) are Legendre polynomials, and the Nm
ℓ are the normalization factors for

the parent mode spherical harmonics. Our expression differs from that of Wu slightly, in

that we explicitly retain these normalization factors.

The bolometric correction is simpler, since it is only a numeric factor expressing the

ratio of the amplitudes measured by the detector to the bolometric variations given by

the theory. We calculated this factor using model atmospheres of different temperatures

provided by Koester (discussed in Finley, Koester & Basri 1997). The observations we

analyze in this paper are either white light measurement using a bi-alkali photocathode or

CCD measurements with a red cutoff filter (BG40). We applied the known sensitivity curves

of these systems and the UV cutoff of the Earth’s atmosphere to the model spectra and

found bolometric corrections of αλ = 0.46 and 0.42, respectively. Because of the wavelength

dependence of limb darkening these corrections depend upon the value of ℓ assumed for

the modes, but this dependence is weak at optical wavelengths. Our values are calculated

assuming ℓ = 1. They are so close to the value that Wu used (0.4) that we have decided to

retain her value of 0.4 to make our results directly comparable to hers.

Now we can write the observable flux change at the photosphere in terms of

(

δf

f

)

i

= αλaig
mi

ℓi
(Θ◦) (6)

(

δf

f

)

i±j

= αλai±jG
mi±mj

ℓi ℓj
(Θ◦) (7)

so the predicted combination amplitude is:
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(

δf

f

)

i±j

=
nij

2

(

δf
f

)

i

(

δf
f

)

j

2αλ

| 2β + γ | (ωi ± ωj)τc◦
√

1 + [(ωi ± ωj)τc◦ ]
2

G
mi±mj

ℓi ℓj
(Θ◦)

gmi

ℓi
(Θ◦)g

mj

ℓj
(Θ◦)

. (8)

Equation 8 is the expression we use to calculate the predicted combination frequency ampli-

tudes for various assumptions of ℓ and m for the parent modes.

We reiterate that the bolometric corrections of the two parent modes are really only

equal if they are modes of the same ℓ. Moreover, the value for αλ for the combination

frequency amplitude in equation 7 will be a linear combination of the bolometric corrections

of the two parent modes. Consequently, the 1�αλ dependence of (δf�f)i±j in equation 8

(and of Rc in equation 9) is only an approximation.

In addition to αλ, calculating a prediction for the combination frequency amplitudes

requires six additional quantities, (δf�f)i, ωi, β, γ, τc◦ , and Θ◦. The first two are the parent

mode amplitude and frequency measured from the Fourier transform. β and γ are theoretical

atmospheric parameters defined by Wu, and τc◦ is the convective timescale estimated from

the longest period mode. The final quantity, Θ◦, is the inclination, which we discuss later.

Physically, it is useful to rearrange equation 8 into the form:

Rc ≡

(

δf
f

)

i±j

nij

(

δf
f

)

i

(

δf
f

)

j

=

[

| 2β + γ | (ωi ± ωj)τc◦

4αλ

√

1 + [(ωi ± ωj)τc◦ ]
2

]

G
mi±mj

ℓi ℓj
(Θ◦)

gmi

ℓi
(Θ◦)g

mj

ℓj
(Θ◦)

= F (ωi, ωj, τc◦, 2β + γ)
G

mi±mj

ℓi ℓj
(Θ◦)

gmi

ℓi
(Θ◦)g

mj

ℓj
(Θ◦)

= F G. (9)

The ratio Rc is a dimensionless ratio between the combination frequency and the product

of its parents, as introduced by van Kerkwijk, Clemens & Wu (2000). It is instructive

to consider the two terms on the right hand side of equation 9 separately. The first term

(F) incorporates the physics particular to this model, i.e., the thermal properties of the

convection zone, while the second term (G) is geometric, and will be present in any theory

that accounts for combination frequencies using nonlinear mixing. In Wu’s theory, the ℓ and

m dependence is entirely contained within this geometric term (except for the ℓ dependence

of the bolometric correction discussed before). Thus mode identification is possible if changes

in G with ℓ are large compared to the natural variations in F .
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In this respect, the theory of Wu is promising. For any individual star with multiple

pulsation modes, the only parameter in F that changes from one mode to another is ω.

Moreover, the functional dependence on ω is such that for typical ZZ Ceti sum frequencies

the variations in F are so small that F ∼ constant (see Figure 1). The same is not true

for difference frequencies, which lie at low frequencies and are therefore suppressed. For

comparison between modes in two different stars, the other parameters in F change slowly,

so that small adjustments to F should be able to reproduce a variety of stars with similar

temperature and mean pulsation period, such as the ensemble we consider in this paper.
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Fig. 1.— Typical F dependence on frequency, normalized to one. F incorporates the physics

of the model of Wu (see equation 9). For a given star, it is only dependent on the frequency

of the combination or harmonic. The only parameter in F whose value varies across stars is

τc◦ , which affects the location of the low frequency roll-off. The other component of Rc, G,

depends upon ℓ, m, and Θ◦ (see Figure 2).
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The theory of BFW can be expressed in the same form as equation 9 by replacing F

with their tabulated atmospheric model parameters. However the BFW F is independent of

pulsation frequency for different modes in any single star, so low frequency difference modes

are not suppressed. For comparisons between modes in different stars, the BFW theory is

radically different from Wu’s. The BFW F term, which is normally an order of magnitude

smaller than in the Wu theory, grows to comparable size for a narrow range of temperature

that depends sensitively on stellar mass. Thus the expectation of the BFW theory is that

combination frequencies in most ZZ Cetis will be smaller than in the theory of Wu (for the

same ℓ). Moreover, the temperature sensitivity of F makes mode identification more prob-

lematic if the BFW theory is correct. Without very precise temperature measurements, it is

impossible to distinguish between large differences in F arising from temperature differences,

and large changes in G, the geometric term, arising from differences in ℓ or Θ◦.

For either theory, the calculation of G in equation 9 requires assigning a value to the

inclination of the pulsation axis to our line of sight. Following Pesnell (1985), we can estimate

the inclination for each star by comparing finely split modes of different m. This requires

that we make potentially dubious assumptions about the relative intrinsic sizes of pulsation

modes, but the final result is not very sensitive to the assumptions. Figures 2 and 3 show

why. Figure 2 shows the dependence of the geometric factor on inclination for m = 0 modes.

It varies very slowly over a large range, and then changes rapidly when we look directly down

upon a nodal line. For ℓ = 1, this occurs near Θ◦ = 90◦, because the parent modes are totally

geometrically cancelled and the combination frequencies are not. However, the apparent size

of these modes, as opposed to the ratio of their sizes, diminishes rapidly near 90◦, and they

eventually fall below the noise threshold of the Fourier transform. At the same viewing

angle, if any m 6= 0 modes are present, they will dominate the power spectrum and so will

their combination frequencies. As Figure 3 shows, these combinations are not very sensitive

to inclination for Θ◦ near 90◦. In other words, the analysis of combination frequencies

requires that they be detectable. At low inclination, only m = 0 combination frequencies are

detectable and at low inclination these are insensitive to Θ◦, at high inclinations only m 6= 0

modes are detectable and at high inclination these are insensitive to Θ◦. For higher ℓ the

situation is more complicated, because there are more nodal lines, but the basic argument

still applies.

With this in mind, following Pesnell (1985), we have assumed that the intrinsic mode

amplitudes are the same for all the modes within a multiplet. When modes of a specific ℓ

value are rotationally split into 2ℓ+1 modes, the inclination of a star can be found by equating

the amplitude ratio of the m = 0 peak and an m 6= 0 peak with the corresponding ratio

of Nm
ℓ ρ

m
ℓ (Θ◦) for both values of m. The Nm

ℓ are the coefficients of the spherical harmonic,

Y m
ℓ (Θ,Φ), and the ρmℓ (Θ◦) are the Legendre Polynomials. We estimated the inclination for
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each star by averaging the amplitudes of the m = ±1 members of the largest amplitude

ℓ = 1 multiplets in each star.

There are four stars in our study with detected combination frequencies. For three of

these, the Pesnell (1985) method yields low inclination (Θ◦ < 20◦). The only combination

frequencies detected in these stars are combinations of m = 0 parent modes, as established

by their singlet nature or by their central location in a frequency symmetric triplet. Figure 2

shows that except for at large inclination, the amplitudes of the combination frequencies

are not very sensitive to inclination for the central, m = 0, parent modes. The fourth star

(GD 244) has a high inclination (Θ◦ & 80◦), and shows only combinations of m 6= 0 parent

modes. Figure 3 shows that at high inclinations the amplitudes of combination frequencies

are not very sensitive to inclination when the parent modes are m = ±1 members of an ℓ = 1

triplet. In fact, for certain m combinations, the amplitudes of combination frequencies are

measured independent of inclination. Therefore, for all stars that we analyze, the amplitudes

of the combination frequencies are at most weakly dependent on the inclination, as long as

the value of ℓ is small. Hence, the approximation of inclination is a small source of error in

our analysis.

With independent estimates of inclination, the only factor that remains unknown in

the factor G of the theory of Wu is the value of ℓ for each mode. Thus we can compare

the measured combination frequencies in the data, if any, to the predicted amplitudes of

combination frequencies under various assumptions for the ℓ value of the parent modes. In

this way we can hope to constrain or actually measure the value of ℓ. We will see that

harmonics of a single mode are more valuable in this enterprise than combinations between

two different modes. This is because there is a greater contrast in the theory between same-ℓ

combinations, and for harmonics there is only one parent, and therefore only one ℓ involved.

In the section that follows, we apply the theory to eight low amplitude hot ZZ Ceti stars,

and show that it is possible to establish the values of ℓ for most modes in these stars.
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Fig. 2.— G withmi = mj = 0 (see equation 9) plotted as a function of inclination angle (Θ◦).

For low inclinations (Θ◦ . 25◦), the predicted amplitudes of the combination frequencies

show only a gradual increase with ℓi = ℓj = 1 (solid line), ℓi = ℓj = 2 (dashed line), and

ℓi = 1, ℓj = 2 (dotted line).
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Fig. 3.— G with ℓi = ℓj = 1 and mi+mj (see equation 9) plotted as a function of inclination

angle (Θ◦). The amplitude of the combination frequencies is insensitive to inclination when

Θ◦ & 60◦ for mi = −mj (dotted line). When both parent modes have the same m (solid

line), the combination amplitude is always independent of inclination. G with mi−mj can be

obtained by letting the dotted line represent mi = mj and the solid line represent mi = −mj .
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3. DATA REDUCTION AND ANALYSIS

The data we present in this section are a combination of published Fourier spectra,

new reductions of archival Whole Earth Telescope data, and original data obtained with

the McDonald Observatory 2.1-m Struve telescope. They constitute all of the currently-

available data with frequency resolution sufficient to measure amplitudes or amplitude limits

for combination frequencies in hot DAV stars. The purpose of this section is to extract

mode frequencies and amplitudes via Fourier methods. In principle, phase measurements

are also possible, but in practice they are too noisy to be useful. In cases where combination

frequencies are not sufficiently above the noise level to detect, we record the upper limit for

comparison to theory.

3.1. Data Reduction

3.1.1. Published Data

The stars for which we use published data include G117-B15A, G185-32, GD 165, R548,

and G226-29 (Kepler et al. 1995b; Castanheira et al. 2004; Bergeron et al. 1993; Mukadam

et al. 2003; Kepler et al. 1995a). These stars were all included as secondary target stars

in Whole Earth Telescope campaigns (WET; Nather et al. 1990) and the referenced papers

present these WET data. Bergeron et al. (1993) (GD 165) and Mukadam et al. (2003)

(R548) also include Canada-France-Hawaii Telescope (CFHT) observations, and Mukadam et

al. (2003) includes supplemental McDonald Observatory observations. All of the published

data we have analyzed for combination frequencies are found in these publications, along

with explanations of the reduction and analysis procedures.

3.1.2. Unpublished Data and New Reductions

We obtained time-series photometry data on both GD 66 and GD 244 in 2003 and 2004

with the McDonald Observatory 2.1-m Struve telescope using the prime-focus ARGOS CCD

photometer with a BG40 Schott glass filter (Nather & Mukadam 2004). We observed GD 66

on fourteen nights during three observing runs totaling 155,130 seconds of data as indicated

in the Journal of Observations, Table 1. We used two integrations times (10 s for the 2003

October run and 5 s for the 2003 November and 2004 January runs, see Table 1). To combine

the runs into one lightcurve we binned the 5 s observations into 10 s bins. We observed GD

244 on ten nights during three observing runs totaling 124,500 seconds of data (see Table 1).
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We used an integration time of 5 s for all of our GD 244 observations. We performed a

complete reduction of the original data for GD 66 and GD 244 using the methods described

by Mukadam et al. (2004).
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Table 1. Journal of Observations for GD 66 and GD 244

Run Name Date Start Time Length Integration Time

(UT) (UT) (sec) (sec)

GD 66

A0726 2003 Oct 25 9:04:23 12750 10

A0729 2003 Oct 27 9:42:27 1870 10

A0730 2003 Oct 27 10:58:12 5420 10

A0733 2003 Oct 28 6:52:39 19530 10

A0738 2003 Oct 29 11:08:30 4560 10

A0742 2003 Oct 31 9:32:33 10720 10

A0746 2003 Nov 1 8:17:12 3970 10

A0755 2003 Nov 19 7:29:14 11475 5

A0767 2003 Nov 22 5:11:34 14785 5

A0789 2003 Nov 29 6:08:55 12045 5

A0793 2003 Nov 30 6:49:05 21585 5

A0795 2003 Dec 1 5:44:42 11940 5

A0835 2004 Jan 20 3:26:37 11715 5

A0838 2004 Jan 21 3:09:07 12765 5

GD 244

A0693 2003 Sep 2 8:42:35 10270 5

A0695 2003 Sep 3 4:21:55 7705 5

A0700 2003 Sep 4 5:23:28 9555 5

A0705 2003 Sep 5 4:50:31 15070 5

A0732 2003 Oct 28 1:30:10 18770 5

A0734 2003 Oct 29 0:53:42 12900 5

A0743 2003 Nov 1 0:58:45 10455 5

A0766 2003 Nov 22 0:54:49 14880 5

A0772 2003 Nov 24 0:58:49 12995 5

A0775 2003 Nov 25 1:10:11 11900 5

Note. — All observations were made with the McDonald Observatory

2.1-m Struve telescope.
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The data for L19-2 were obtained as the secondary target for the WET campaign XCov

12 in 1995 April (see Sullivan 1995). The observations of L19-2 that were included in this

reduction are listed in the Journal of Observations, Table 2. The integration times of most

runs were 10 s. We binned the 5 s Mt. John Observatory (MJUO) observations into 10 s

bins. We performed a complete reduction of the original data using the methods described

by Nather et al. (1990) and Kepler (1993).
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Table 2. L19-2 Journal of Observations

Run Name Telescope Date Start Time Length Integration Time

(UT) (UT) (sec) (sec)

S5843 SAAO 0.75 m 1995 Apr 25 17:53:00 5590 10

S5844 SAAO 0.75 m 1995 Apr 25 22:33:00 5040 10

RO064 Itajuba 1.60 m 1995 Apr 25 23:23:20 29080 10

AP2695-1 MJUO 1.0 m 1995 Apr 26 11:04:00 9245 5

AP2695-2 MJUO 1.0 m 1995 Apr 26 13:51:50 16135 5

RO065 Itajuba 1.60 m 1995 Apr 27 3:53:20 11810 10

S5845 SAAO 0.75 m 1995 Apr 27 17:23:00 31900 10

AP2895 MJUO 1.0 m 1995 Apr 28 11:38:20 18550 5

S5846 SAAO 0.75 m 1995 Apr 28 17:25:00 24360 10

RO066 Itajuba 1.60 m 1995 Apr 28 22:25:00 9410 10

RO067 Itajuba 1.60 m 1995 Apr 29 1:59:00 12600 10

AP2995 MJUO 1.0 m 1995 Apr 29 7:27:10 39270 5

S5847 SAAO 0.75 m 1995 Apr 29 17:20:00 31580 10

RO068 Itajuba 1.60 m 1995 Apr 29 22:26:40 33710 10

S5848 SAAO 0.75 m 1995 Apr 30 21:00:00 14340 10

RO069 Itajuba 1.60 m 1995 Apr 30 22:11:40 34560 10

MY0195 MJUO 1.0 m 1995 May 1 7:04:30 40660 5

S5849 SAAO 0.75 m 1995 May 1 23:41:00 7890 10

RO070 Itajuba 1.60 m 1995 May 2 1:27:50 9630 10

RO071 Itajuba 1.60 m 1995 May 2 5:02:20 10340 10

DB001 SAAO 0.75 m 1995 May 2 18:19:30 26990 10

DB002 SAAO 0.75 m 1995 May 3 2:38:40 5090 10

DB003 SAAO 0.75 m 1995 May 3 17:17:20 29990 10

RO073 Itajuba 1.60 m 1995 May 4 1:20:50 21510 10

DB004 SAAO 0.75 m 1995 May 4 1:47:20 8290 10

DB005 SAAO 0.75 m 1995 May 4 19:58:30 21150 10

DB006 SAAO 0.75 m 1995 May 5 2:02:40 3200 10

Note. — All data come from the WET campaign XCov12.
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3.2. Analysis

Of the stars that we studied, four exhibit detectable combination frequencies: GD 66,

GD 244, G117-B15A, and G185-32. The remainder, L19-2, GD 165, R548, and G226-29,

do not show combination frequencies, though we will show that Wu’s theory suggests that

they must be just below the current noise limits. The temperature and log g for each star

from Bergeron et al. (2004) are listed in Table 3. In §3.2.1 and §3.2.2, we will present the

individual analyses. We will describe our calculations of the inclination of each star and

compare the observed combination frequency amplitudes to the predictions of Wu’s theory.
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Table 3. Stellar Information

Star Teff log g Reference

(K) (cgs)

GD 66 11,980 8.05 1

G117-B15A 11,630 7.97 1

GD 244 11,680 8.08 1

G185-32 12,130 8.05 1

L19-2 12,100 8.21 1

GD 165 11,980 8.06 1

R548 11,990 7.97 1

G226-29 12,460 8.28 1

References. — (1) Bergeron et al. (2004).
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3.2.1. Stars With Detected Combination Frequencies

GD 66

Apart from an analysis by Fontaine et al. (1985), little progress toward understanding GD

66 has been made since Dolez, Vauclair & Chevreton (1983) first reported its discovery.

The relatively high number of combination frequencies identified in the Fourier transform of

GD 66 make it an ideal star to include in this paper.

To identify the pulsation modes and combination frequencies of GD 66, we computed

a Fourier transform from the reduced and combined lightcurves listed in Table 1. We have

included a sample lightcurve in Figure 4 and the Fourier transform of all GD 66 data in

Figure 5. To identify closely spaced modes in the regions of obvious excess power, we utilized

a prewhitening technique similar to that of O’Donoghue & Warner (1982) using an iterative

nonlinear least squares procedure. For each peak, we fitted the frequency, amplitude, and

phase and then subtracted the fit from the original lightcurve. We then fitted a second

frequency to the altered data, choosing in every case the largest remaining peak, and used

the result of this fit to conduct a simultaneous least squares fit to the original data. Thus

at each step in the prewhitening, the frequencies removed are from a simultaneous fit to the

original data.

The problems with applying such a procedure to a highly aliased data set are well known

(Nather et al. 1990), and we have no illusions that we can successfully measure the correct

frequencies of the smaller modes in the presence of the contaminating window function.

Nonetheless, the exercise provides two pieces of information that are valuable and reliable.

It tells us how many modes are required to model the data, and gives us crude amplitudes

for the members of the multiplet that are useful in estimating inclination.
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Fig. 4.— Lightcurve of GD 66. These data were acquired with the ARGOS CCD photometer

on the McDonald Observatory 2.1-m Struve telescope with an exposure time of 10 s.

Fig. 5.— Fourier transform of GD 66. This FT includes all individual nights of the data that

are listed in Table 1. We indicate the five pulsation modes and nine identified combination

frequencies that we reference in Table 4. We believe the peak that we call F6 is due to the

guide error of the telescope.
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In Figure 6 we show the deconstruction of the 271 second pulsation mode (F1) by

prewhitening. The Fourier transform (FT) of the reduced data in the region of F1 is shown

in Figure 6a. The window function, in Figure 6b, is the FT of a lightcurve of a sinusoid

with the same period, amplitude, and phase as the highest amplitude peak in the original

FT that has been sampled in the same manner as the original data. Figure 6c shows the

FT of the lightcurve with the largest peak removed. Figures 6c and 6d are prewhitened FTs

that reveal additional low amplitude signals which were previously hidden in the window

function of the highest amplitude peak. Figure 6e, in which there is no remaining signal,

is an FT of a lightcurve with the three highest amplitude peaks fitted and removed from

the original lightcurve. It is gratifying that the frequencies identified by this deconstruction

form a frequency-symmetric triplet, but better sampling will be required to measure all three

frequencies with confidence.

A similar procedure showed that F2 was consistent with a single frequency, to within

the noise, and that F3 is a combination of at least three frequencies. F4 and F5 both show

residuals after prewhitening by one frequency, but they are too close to the noise level to

deconstruct further. F6 is at the frequency expected from the drive of the telescope, and a

peak at this location is present in all of the ARGOS data, so we do not interpret it as being

astrophysically significant.
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Fig. 6.— Deconstruction of F1 in GD 66. a: A Fourier transform of GD 66 near 271 s (F1).

b: A window function obtained by taking an FT of a single sinusoid (with the same period

and amplitude of the 271.71 s peak) that has been sampled in the same manner as the data.

c: An FT near F1 with a period of 271.71 s removed. d: An FT near F1 with periods of

271.71 and 272.20 s removed. e: An FT near F1 with periods of 271.71, 272.20, and 271.23

s removed.
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The five dominant pulsation modes (F1 - F5) and associated power derived from prewhiten-

ing are listed in Table 4 and presented visually in Figure 7. The amplitude of the smallest of

our five modes is about three times above
√

〈P 〉, where 〈P 〉 is the average power of the FT,

yielding a false alarm probability (Horne & Baliunas 1986) of about 20%. That is, there

is a 20% chance that F5 is an artifact of noise. However, the existence of a combination

frequency at F1+F5 adds confidence to this detection. All the pulsation modes except F5

were also identified by Fontaine et al. (2001). There is a large peak near the location of F5

in their data, but it was not formally significant against the noise level of their FT.

In addition to the five modes detected, we identified nine combination frequencies that

were consistently present throughout the three month span of our GD 66 observations, with

one exception (F1+F4 was not identified in the 2003 October data set). We verified our

identification of combination frequencies with a computer program inspired by Kleinman

(1995). Our program allows a user to select pulsation modes in the data, calculates all pos-

sible combination frequencies of these modes, and then searches for significant combination

frequencies in the data. The search is conducted over an estimated error range equal to the

resolution of the Fourier transform. We consider this a better estimate of the frequency error

than the smaller values from the least squares fit because the combination frequencies are

usually low amplitude, i.e., only a few times as large as the background. The frequencies

of such small signals are pulled by the presence of unresolved noise peaks, while the least

squares fit formally assumes only a single unblended frequency is present. The program suc-

cessfully identified all combination frequencies that we found by inspection in the data, and

also found some combinations that we had missed in our visual search. In some cases, the

highest amplitude peak among the combination frequency and its aliases did not fall within

the error range we established. In these cases, prewhitening a forced fit of the expected com-

bination frequency successfully removed the signal, and we have listed the amplitude from

the forced frequency fit. Our listed period errors do not include the uncertainty in iden-

tifying the true peak among the alias peaks and these dominate the error for combination

frequencies.
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Table 4. GD 66 Periods and Mode Identifications

Mode Label Frequency Period σp Amplitude σamp ∆f a ℓ m b

(µHz) (sec) (sec) (mma) (mma) (µHz)

F1 3673.753 272.2012 0.0004 2.50 0.17 -6.582? 1 -1

· · · 3680.335 271.7144 0.0001 16.70 0.16 · · · 1 0

· · · 3686.927 271.2286 0.0004 2.93 0.17 6.592? 1 +1

F2 3302.889 302.7653 0.0001 11.29 0.19 · · · 1 0

F3 5049.227 198.0501 0.0002 2.65 0.21 -10.355? 1 -1

· · · 5059.582 197.6448 0.0001 4.21 0.21 · · · 1 0

· · · 5070.3 c 197.23 · · · 1.77 · · · 10.7? 1 +1?

F4 3902.680 256.2341 0.0004 2.48 0.21 -5.603? 1? -1?

· · · 3908.283 255.8668 0.0003 3.43 0.21 · · · 1? 0?

F5 1911.121 523.2533 0.0016 2.33 0.22 · · · 1 or 2 ?

· · · 1928.257 518.6029 0.0021 1.77 0.22 17.136? 1 or 2 ?

F6 d 8127.845 123.0338 0.0002 1.30 0.22 · · · guide · · ·

2F1 7360.670 135.8572 0.0002 1.57 0.22 0.001 · · · · · ·

F1+F2 6983.219 143.2004 0.0001 2.83 0.21 0.005 · · · · · ·

F1+F3 8747.254 114.3216 0.0002 0.88 0.22 -7.336 · · · · · ·

F1+F4 7588.604 131.7765 0.0004 0.64 0.22 0.015 · · · · · ·

F1+F5 5587.599 178.9678 0.0007 0.61 0.22 3.857 · · · · · ·

2F2 6605.802 151.3821 0.0004 0.80 0.22 -0.025 · · · · · ·

F2+F3 8362.479 119.5818 0.0004 0.53 0.22 -0.009 · · · · · ·

F2+F4 7210.499 138.6867 0.0006 0.48 0.22 0.672 · · · · · ·

2F1+F2 10675.6 93.6720 0.0002 0.52 0.22 -11.994 · · · · · ·

aFor pulsation modes, ∆f is the separation between the modes in the multiplets and the m = 0

member. For combination frequencies, ∆f is the frequency difference between the calculated and observed

combination frequency (i.e., ∆f = F1 + F2− [F1 + F2]).

bThe m identifications in the table are based on the frequency splitting alone, not on the size of the

combination peaks.

cWe were unable to obtain a simultaneous fit with this frequency and the other two frequencies in the

F3 triplet, though it does seem to be a significantly high amplitude peak above the noise.

dF6 is a formally significant peak that is due to the guide error of the telescope and probably does not

represent a pulsation mode originating at the star.
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Fig. 7.— Prewhitened peaks of parent modes in the GD 66 Fourier transform.
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Having identified and measured the amplitudes of the combination frequencies allows

us to calculate the ratio of combination to parent mode amplitudes (Rc, see equation 9)

and compare it to the theoretical predictions. Figure 8 shows the observed Rc for all of the

detected two-mode combination frequencies in GD 66. Where no combination was detected,

we have plotted a limit equal to the 1 sigma noise level in the Fourier transform. The

observed Rc do not depend on any theory.

The theoretical calculations of Rc require that we supply an inclination estimate, an

estimate of τc◦ , and a value for the parameter 2β + γ. For the first, a fit to the largest

multiplet using the technique of Pesnell (1985) described in §2 yielded Θ◦ = 13 degrees, and

we have used that value for all of the theoretical calculations. The result is not very sensitive

to this parameter as long as Θ◦ . 20◦ (see Figure 2). The inclination calculation requires

an assumption for the ℓ identification of F1. However, this calculation is scarcely sensitive

to our ℓ = 1 assumption for F1. If F1 is actually an ℓ = 2 mode, then the inclination of

the star is 8 degrees, and still in the range where our results are insensitive to inclination.

For τc◦ , we have used the value of 523 s, which is the longest period in GD 66, for reasons

discussed in §2. This value only affects the location of the frequency roll-off, not the predicted

combination frequency amplitudes in the high frequency limit. Finally, because the detected

combinations have similar values of Rc, indicating similar ℓ, we decided to treat 2β+γ in this

star as a free parameter. The solid line in Figure 8 shows the best fit under the assumption

that all modes are ℓ = 1. The fitted value of 2β + γ is −9.35, very close to the value Wu

herself used (−10) for her comparison to G29-38, and to her theoretically calculated value

(−12.6). Any other assumption for ℓ would yield values of 2β + γ different by a factor of

∼ 3 or more, and we do not consider this a reasonable possibility. Using ℓ = 1, the detected

combination frequencies fit the model with a reduced χ2 of 0.78, which may indicate that we

have slightly overestimated our errors. We used the errors from the least square fits, which

are often regarded as underestimates (Winget et al. 1991), but we see no evidence for that

here.
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Fig. 8.— Ratio of combination to parent mode amplitudes (Rc) for GD 66. The lines are

theoretical predictions for G0+0
1 1 �g

0
1g

0
1(Θ◦ = 13◦) (solid line), G0+0

1 2 �g
0
1g

0
2(Θ◦ = 13◦) (long-

dashed line), and G0+0
2 2 �g

0
2g

0
2(Θ◦ = 13◦) (dashed line). The data points are the detected

harmonics or limits (filled squares), detected cross combination frequencies (stars), and limits

for the cross combinations (crosses). The downward arrows on the limits indicate that the

points represent maximum values. The upper limit for Rc of 2F5 lies at 124 (not shown).
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Even though the data show tight scatter about the line representing combinations be-

tween two ℓ = 1 modes, we cannot conclude that all of the modes are ℓ = 1 on that basis

alone. The line representing ℓ = 1, 2 combinations (long dashes in Figure 8) is close to the

ℓ = 1, 1 line, and falls within the error bars for some combinations. Fortunately, the the-

oretical lines for same-ℓ combinations are well-separated, suggesting that harmonics, which

are same-ℓ by definition, might be able to constrain ℓ when cross combinations (i.e., all

combinations that are not harmonics) cannot. We have detected harmonics for F1 and F2,

and measured limits for the harmonics of the remaining three modes. These are shown in

Figure 8 as filled squares. The measured Rc for F1 and F2 and the limits for F3 and F4 are

only consistent with ℓ = 1, and so we identify all of those modes as ℓ = 1, F4 somewhat

tentatively because the limit is not very stringent. The limit for F5 is too large (Rc = 124)

to fit on our plot and does not constrain ℓ uniquely. Though our identification relies pri-

marily on harmonics, the cross combinations are all consistent with this conclusion. The m

identifications we assigned in Table 4 arise from frequency splitting only, and are not derived

from combination frequency amplitudes.

Finally, the Rc limits we have plotted at low frequency suggest that the roll-off expected

from the theory actually occurs, which eliminates from consideration competing models,

including the BFW theory, that predict no frequency dependence for Rc.

GD 244

Fontaine et al. (2001) first reported the detection of variability in the DAV white dwarf

GD 244, but no subsequent observations have been published. The Fourier transforms of

GD 244 and GD 66 both contain large pulsation modes near 200, 256, and 300 seconds.

The similarity of GD 244 to GD 66, including its relatively high number of combination

frequencies, makes it another ideal candidate to include in this study.

To identify the pulsation modes and combination frequencies of GD 244, we computed

a Fourier transform from the reduced and combined lightcurves listed in Table 1. We have

included a sample lightcurve in Figure 9 and the Fourier transform of all GD 244 data in

Figure 10. We used the prewhitening technique to identify pulsation modes and combination

frequencies in GD 244, as with GD 66. We also used prewhitening to reveal the doublet

structure in the two highest amplitude pulsation modes. As with GD 66, we do not expect

that we have consistently measured the correct frequencies of the modes in these doublets

in the presence of the contaminating window function. However, the amplitudes are useful

in estimating the inclination.
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Fig. 9.— Lightcurve of GD 244. These data were acquired with the ARGOS CCD pho-

tometer on the McDonald Observatory 2.1-m Struve telescope with an exposure time of 5

s.

Fig. 10.— Fourier transform of GD 244. This FT includes all individual nights of data

included in Table 1. We indicate the four pulsation modes and all combination frequencies

that we reference in Table 5. F1+F3 is likely a blend with guide error.
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In Figure 11 we show the deconstruction of the 256 second pulsation mode (F2) by

prewhitening. The Fourier transform (FT) of the reduced data in the region of F2 is shown

in Figure 11a. The window function for the GD 244 data set is in Figure 11b. Figure 11c

shows the FT of the lightcurve with the largest peak removed. Panel c is a prewhitened

FT that reveals additional low amplitude signal which was previously hidden in the window

function of the highest amplitude peak. Figure 11d is an FT of a lightcurve with the two

highest amplitude peaks fitted and removed from the original lightcurve. We were unable to

fit any other statistically significant signals from the FT in the bottom panel.
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Fig. 11.— Deconstruction of F2 in GD 244. a: A Fourier transform (FT) of GD 244 near

256 s (F2). b: A window function obtained by taking an FT of a single sinusoid (with the

same period and amplitude of the 256.56 s peak) that has been sampled in the same manner

as the data. c: An FT near F2 with a period of 256.56 s removed. d: An FT near F2 with

periods of 256.56 and 256.20 s removed. Fitting and removing further peaks did not reduce

the noise level.
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A similar procedure showed that F1 is also consistent with a doublet. F3, however, is

consistent with a single frequency, although any putative companion peak would be in the

noise if it scaled as the companions of F1 and F2. F4 is not formally significant, with a

false alarm probability near 1 in the whole data set, but it appears above the noise at the

same frequency in all three of the single month Fourier transforms so we have included it in

Table 5. It does not show any combination peaks and therefore does not enter our analysis.

The complete list of pulsation modes is listed in Table 5 and presented visually in Figure 12.

We did not detect the 294.6 s pulsation mode found by Fontaine et al. (2001) in GD 244.

All other pulsation modes that we list, except F4, were identified by Fontaine et al. (2001).

There are no formally significant peaks above the noise level in the low frequency region of

their FT.
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Table 5. GD 244 Periods and Mode Identifications

Mode Label Frequency Period σp Amplitude σamp ∆f a ℓ m b

(µHz) (sec) (sec) (mma) (mma) (µHz)

F1 3255.919 307.1329 0.0001 20.18 0.17 · · · 1 -1

· · · 3261.886 306.5712 0.0002 5.02 0.17 5.966? 1 +1

F2 3897.733 256.5594 0.0001 12.31 0.20 · · · 1? -1?

· · · 3903.255 256.1964 0.0001 6.73 0.20 5.522? 1? +1?

F3 4926.697 202.9758 0.0001 4.04 0.21 · · · 1 -1?

F4 1103.656 906.0795 0.0056 1.72 0.21 · · · ≤ 3 ?

2F1− 6511.422 153.5763 0.0001 2.25 0.23 0.417 · · · · · ·

F1−+F1+ 6516.119 153.4656 0.0003 0.95 0.23 1.686 · · · · · ·

F1−+F2− 7153.211 139.7974 0.0001 2.30 0.21 0.442 · · · · · ·

F1−+F3−c 8182.615 122.2103 0.0002 0.96 0.21 0.001 · · · · · ·

2F2− 7795.472 128.2796 0.0001 2.44 0.21 -0.006 · · · · · ·

F2−+F3− 8824.598 113.3196 0.0003 0.53 0.21 -0.168 · · · · · ·

aFor real pulsation modes, ∆f is the separation between the modes in the doublets. For combination

frequencies, ∆f is the frequency difference between the calculated and observed combination frequency

(i.e., ∆f = F1 + F2− [F1 + F2]).

bThe m identifications in the table are based on frequency splitting alone, not on the size of the

combination peaks.

cThe period of F1−+F3− in GD 244 is close to the period of F6 in GD 66 (see Table 4), so it is

probable that the amplitude and frequency of this combination frequency are partially contaminated

by the guide error of the telescope.
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Fig. 12.— Prewhitened peaks in the GD 244 Fourier transform. In addition to the parent

modes, we include one combination frequency (2F1) in which we resolved fine structure.
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In addition to the four modes detected, we identified six combination frequencies that

were consistently present throughout the observing run. In all cases, the highest amplitude

peak among the combination frequency and its aliases fell within the error of the expected

frequency. We list the frequencies of the highest amplitude peaks in Table 5. The frequency

errors were sufficiently small that there was no confusion between the harmonic of the largest

component (presumed m = −1) and the sum of the m = −1 and m = +1 components.

We use the doublet structure at 307 seconds (F1) to estimate the inclination of the

pulsation axis of GD 244. We assume that the doublet structure in these two pulsation

modes results from viewing ℓ = 1 modes at high inclination so that the third (central, m = 0)

mode does not appear. As discussed previously, our results do not depend sensitively on this

assumption. Using the maximum amplitude in the prewhitened FT of F1 as an estimate for

the amplitude of the m = 0 peak, we apply the Pesnell (1985) method and find a minimum

possible inclination of 80 degrees. Recall that Figure 3 shows that at high inclination,

the amplitudes of combination frequencies with ℓ = 1 and same-m parent modes have no

dependence on inclination.

Figure 13 is a plot of the theoretical predictions for GD 244 (Rc with Θ◦ = 80◦) and

the observed amplitudes of the six detected combination frequencies for comparison. We

also include the observed noise limit (indicated by crosses for the same-m combinations and

open squares for the different-m combinations) in cases where there was no combination

frequency detected. The downward arrows imply an upper limit. When we apply the GD 66

calibration of 2β + γ = −9.35 to GD 244 (in Figure 13), the predictions for the ℓ = 1, 1 line

resemble the observations for our detected combination frequencies except for the Rc of 2F2.

The reduced χ2 is 16.9 if all the modes are assumed to be ℓ = 1, but 9.2 if we leave out the

combinations of F2. Obviously we could reduce χ2 further if we varied 2β+ γ as before, but

part of our exercise is to establish that we can conduct mode identification without fitting

parameters, so that it is possible to measure the ℓ of hot ZZ Cetis with only a single detected

combination frequency.

Turning to the harmonics, which are known to be same-ℓ and therefore to have well-

separated predictions for Rc, 2F1 and the limit for 2F3 demand that F1 and F3 be ℓ = 1

modes. The high measurement for 2F2 suggests that ℓ may not be 1. However, if we assume

ℓF2 = 2, then χ2 > 400 because Rc for a harmonic of an ℓ = 2, m = 1 mode is predicted to

be near 90. Even if we relax the assumptions used to calculate inclination and adjust it to

minimize χ2 for the assumption of ℓF2 = 2, then at Θ◦ = 67◦, χ2 = 17.3. So even under the

best assumptions, the identification of F2 as ℓ = 2 would yield a worse fit than if we let it be

ℓ = 1. Moreover, its similar frequency splitting to F1 suggests that it is ℓ = 1, but without

better sampling with WET this is not a secure statement. Therefore, we have left question
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marks next to the identification of F2 in Table 5. It is possible that the harmonic of F2

is inflated by some independent unresolved pulsation mode, but our data are insufficient to

test this possibility. Finally, for the smallest mode, F4, the limit on the harmonic constrains

it to be ℓ ≤ 3, which is not useful.

Because F1 and F2 are multiplets, we expect fine structure in their harmonics and

combinations, and indeed we observe secondary peaks near both harmonics at the sum of

the presumed m = −1 and m = 1 parent modes. Unfortunately, the theoretical lines for

these cross terms in m are not well-separated from similar cross terms in an ℓ = 2 mode

(see Figure 13). Likewise, the F1+F2 peak shows multiplet structure, but we are unable to

reliably dissect it into individual modes. The limits we have measured for the cross terms

of different-ms are all consistent with the ℓ = 1 identifications, but would not be sufficient

alone to reach that conclusion.
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Fig. 13.— Ratio of combination to parent mode amplitudes (Rc) for GD 244. The lines are

theoretical predictions for G1+1
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dashed line), and G1+1
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1
2(Θ◦ = 80◦) (dashed line). The data points are the detected

harmonics or limits (filled squares), detected cross combination frequencies (stars), limits for

the same-m cross combinations (crosses), and limits for the different-m cross combinations

(open squares). The downward arrows on the limits indicate that the points represent

maximum values.
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G117-B15A

G117-B15A is one of the hottest known ZZ Ceti stars. McGraw & Robinson (1976) confirmed

the star’s variability and Kepler et al. (1982) found six pulsation modes. The dominant

mode, at 215 seconds, is stable in amplitude and phase such that G117-B15A is the most

precise optical clock known (Kepler et al. 2000a). We use published measurements for

G117-B15A obtained from the WET campaign XCov 4 in 1990 May (Kepler et al. 1995b).

They list the highest amplitude modes as ℓ = 1.
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Table 6. Periods and Mode Identifications for Published Data with Combination

Frequencies

Mode Label Frequency Period σp Amplitude σamp ∆f a ℓ m Reference

(µHz) (sec) (sec) (mma) (mma) (µHz)

G117-B15A

F1 4646.909 215.1968 0.0007 19.15 0.39 · · · 1 0 1

F2 3288.91 304.052 0.004 6.89 0.44 · · · 1 0 1

F3 3697.47 270.455 0.004 5.47 0.45 · · · 1? 0 1

2F1 9293.68 107.600 0.004 1.06 0.45 0.14 · · · · · · 1

F1+F2 7956.59 125.682 0.006 0.90 0.45 -20.77 · · · · · · 1

F1+F3 8344.74 119.836 0.003 1.60 0.45 -0.36 · · · · · · 1

F1-F2 1357.6 736.60 · · · 0.90 · · · 0.4 · · · · · · 1

G185-32

F1 4635.3 215.74 · · · 1.93 0.07 · · · 1 or 2 0 2

F2 2701.2 370.21 · · · 1.62 0.07 · · · 1 or 2 0 2

F3 7048.8 141.87 · · · 1.43 0.07 · · · 3 0 2

F4 3317.8 301.41 · · · 1.13 0.07 · · · 1 or 2 0 2

F5 3335.6 299.79 · · · 0.95 0.07 · · · 1 or 2 0 2

F6 13784.9 72.54 · · · 0.93 0.07 · · · 1 or 2 0 2

2F3 14097.7 70.93 · · · 0.69 0.07 -0.1 · · · · · · 2

F3-F6 6736.1 148.45 · · · 0.57 0.07 0.0 · · · · · · 2

Note. — We have not included a complete list of eigenmodes for each star. Instead, we have only included

eigenmodes relevant to this study. The ℓ and m identifications are from our analysis.

a∆f is the frequency difference between the calculated and observed combination frequency (i.e., ∆f = F1 +

F2− [F1 + F2]).

References. — (1) Kepler et al. (1995b); (2) Castanheira et al. (2004).
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The 215 s pulsation mode of G117-B15A has a large central peak and two possible

adjacent peaks regarded by Kepler et al. (1995b) as “low probability” because they do not

rise very far above the already low noise level. We have used the size of the adjacent peaks

to constrain the inclination of this star, under the assumption that the central peak is an

ℓ = 1, m = 0 mode. We find that the star has a maximum inclination of five degrees (nearly

pole-on), and this result is not sensitive to the assumption of ℓ = 1. In order to appear as a

singlet, modes of any ℓ must be viewed at low inclination.
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Fig. 14.— Ratio of combination to parent mode amplitudes (Rc) for G117-B15A. The

lines are theoretical predictions for G0+0
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2(Θ◦ = 5◦) (dashed line). The data points are the detected

harmonics or limits (filled squares), detected cross combination frequencies (stars), and limits

for the cross combinations (crosses). The downward arrows on the limits indicate that the

points represent maximum values. There are no error bars for F1-F2 because there were

none reported by Kepler et al. (1995b).
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Figure 14 is a plot of the theoretical predictions for G117-B15A (Rc with Θ◦ = 5◦) and

the observed amplitudes of the four detected combination frequencies for comparison. We

also include the observed noise limit (indicated by the crosses) in cases where there was no

combination frequency detected. The downward arrows below the crosses indicate an upper

limit. Just as with GD 66, Wu’s theory predicts high amplitudes for all of the combination

frequencies that we detect and low amplitudes for those we do not detect. When we apply

the GD 66 calibration of 2β + γ = −9.35 to G117-B15A (in Figure 14), the predictions are

consistent with the observations for our detected combination frequencies, though the scatter

is considerably worse than in GD 66. The reduced χ2 is 3.14 if all the modes are assumed

to be ℓ = 1. The combination F1-F2, located in the lower left quadrant of Figure 14, is not

included in this χ2, because no formal errors were reported by Kepler et al. (1995b). If we

assume the error for the amplitude of this combination is greater than the largest errors in

the plot, then it gives no information about the ℓ of its parents, but is consistent with the

low frequency roll-off of Wu’s theory.

Robinson et al. (1995) established that ℓ = 1 for F1 by comparing time-resolved

spectroscopy observations in the UV and optical wavelengths. The amplitude of the harmonic

of this mode, combined with our analysis, confirms this ℓ = 1 identification; the observed

Rc for the harmonic of F1 is too small to be consistent with that for ℓi = ℓj = 2, which is

2.5 times greater than Rc for ℓi = ℓj = 1 and 5 greater than the Rc we observe. Likewise,

the limit for the harmonic of F2 is sufficiently low to constrain this mode to be ℓ = 1 with

a 98.7 percent confidence level. The limit for 2F3 is more ambiguous, but clearly requires

that ℓ ≤ 2 for F3. We list our mode identifications in Table 6. These results are consistent

with the seismological analyses of both Bradley (1998) and Brassard et al. (1993), where

the choice of ℓ = 1 for these three peaks yielded reasonable physical parameters.

G185-32

McGraw et al. (1981) discovered the DA white dwarf G185-32 to be a relatively low

amplitude multi-periodic ZZ Ceti star on the basis of its (G − R) colors (see Greenstein

1976). The largest amplitude peaks have periods of 71, 73, 142, 216, 301, and 370 seconds.

G185-32 is unique among the ZZ Cetis in that it has a harmonic (at 71 s) that is sometimes

measured to be larger than its parent frequency (at 142 s). This has led to disagreement over

whether the harmonic is a pulse shape artifact, or whether there are resonances between real

eigenmodes that happen to be harmonically related (Castanheira et al. 2004). Most recently,

Thompson et al. (2004) has found that identifying the 142 s mode as high ℓ (ℓ = 4) can

explain all of the available observations, which include time-resolved UV spectroscopy from

HST (Kepler et al. 2000b), time-resolved optical spectroscopy from Keck (Thompson et al.
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2004), and time-series photometry from WET (Castanheira et al. 2004). An ℓ = 4 mode

cancels itself in the integration over the visible hemisphere for almost any value of inclination,

but its harmonic may not, because it has a surface distribution with characteristics of lower

ℓ. This allows a harmonic to appear larger than its fundamental. In our analysis, we apply

the theory of Wu under the assumption that the peak at 142 s is the parent mode of a

harmonic at 71 s. We use published measurements for G185-32 obtained from the WET

campaign XCov 8 in 1992 September (Castanheira et al. 2004).

With the exception of the 142 s mode, Kepler et al. (2000b) identify all the other

modes as either ℓ = 1 or ℓ = 2 based on HST data alone. Using independent temperature

constraints they choose ℓ = 1 for all of these modes. Under this identification, F11, at 215 s,

is the highest amplitude ℓ = 1 mode, and we use it to estimate the inclination. Castanheira

et al. (2004) detect only one peak at 215 s, so we presume it to be the m = 0 component

and use the neighboring noise limit to approximate the size of the m = ±1 peaks. The

Pesnell (1985) method then yields Θ◦ = 13 degrees. If the inclination were greater than

this, we would see the m = ±1 members of the multiplet above the noise. Our results are

robust even if the ℓ identification is not; if F1 is actually an ℓ = 2 mode, then the inclination

of the star is less than 7 degrees, and still in the range where our results are insensitive to

the inclination (see Figure 2).

1Our nomenclature (see Table 6) does not follow Thompson et al. (2004), Castanheira et al. (2004),

nor Kepler et al. (2000b). We have labeled the modes in order of highest amplitudes from the WET data.
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Figure 15 is a plot of the theoretically predicted combination frequency amplitude ratios

for G185-32 (Rc with Θ◦ = 13◦) and the observed amplitudes of the detected combination

frequencies for comparison. For clarity, the ℓ = 1, 1 and ℓ = 2, 2 lines are not included in

Figure 15, but fall below the lowest line shown (ℓ = 1, 3). Unlike the harmonics found in

GD 66, GD 244, and G117-B15A, Rc for the harmonic of F3 in G185-32 is more than 50

times greater than the prediction for ℓi = ℓj = 1 and more than 15 times the prediction for

ℓi = ℓj = 2. The best explanation for this is that F3 is a high ℓ mode, just as Thompson et

al. (2004) claim for independent reasons. The value of ℓ that best explains our Rc is ℓ = 3

rather than ℓ = 4. However, in the case of high ℓ, our theory suffers from two problems.

First, the geometric factor in Wu’s theory varies more rapidly with inclination for ℓ = 3 and

4 (instead of the gradual changes for low ℓ shown in Figure 2, see Figure 22 in Appendix

A). We have accommodated this by including a range of inclinations about the 13 degree

nominal value. We show this range as dotted lines in Figure 15, which indicate how Rc for

ℓi = ℓj = 3 changes between Θ◦ = 0◦ and 20◦. Rc for 2F3 falls within the prediction for

ℓF3 = 3. The second problem is our use of a constant bolometric correction that is really only

appropriate for ℓ = 1. This is a limitation inherent to the analytic theory as Wu presented it,

and could be addressed by employing numerical models, but this would be not be consistent

with our objective of having a quick and easily applicable method for mode identification

in large numbers of ZZ Ceti stars. We have calculated bolometric corrections for higher ℓ,

and the differences are not large enough to change the ℓ = 3 identification for F3. So the

inconsistency of our ℓ = 3 identification and the ℓ = 4 identification of Thompson et al.

(2004) remains a mystery. Fortunately, for seismological work it is useful to identify a mode

as high ℓ, even if the exact value is unknown. The density of modes in the models at high ℓ

is so large that they do not contribute seismological constraints because the radial overtone

(n or k) is unknown, but misinterpreting a high ℓ mode as ℓ = 1 or 2 would lead the models

astray. So even if a mode identification method based on measurements of Rc alone cannot

identify high ℓ modes precisely, it is still useful for its ability to discriminate between modes

of high and low ℓ.

In addition to the identification of F3 as high ℓ, the limits on Rc for the harmonics of

F1, F2, F4, F5, and F6 constrain that ℓ ≤ 2 for these modes, consistent with the tentative

mode identifications of Castanheira et al. (2004). Our results are also consistent with the

seismological analysis of Bradley (2005), including his high ℓ identification for F3, with the

exception of his identification of F6 as high ℓ. Unfortunately, we are not able to definitively

assign any ℓ values to these modes due to their intrinsically low amplitudes (see Clemens

1994; Thompson et al. 2004). Likewise, the only detected cross term, which is a combination

with the high ℓ mode F3, is not able to narrow the choice of ℓ. Indeed, we are not even able

to determine whether the mode we call F6 is a combination with F3 and a mode at 148 s
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or whether the latter is F3-F6. We have used the latter identification in Table 6, following

Castanheira et al. (2004) and consistent with Bradley (2005).

3.2.2. Stars Without Detected Combination Frequencies

L19-2

McGraw (1977) discovered the variability of L19-2, a hot, low-amplitude ZZ Ceti star.

O’Donoghue & Warner (1982) presented a comprehensive analysis of single site data, and

were able to assign tentative values of ℓ to the pulsation modes. Bradley (2001) revised

these identifications in light of theoretical improvements, finding three modes of ℓ = 1 and

two of ℓ = 2. L19-2 was the subject of the WET campaign XCov 12 in 1995 April, on

which Sullivan (1995) presented a preliminary paper. We have re-reduced and analyzed the

archival WET data to search for combination frequencies, and found none detectable above

the noise limit of the Fourier transform.

As with GD 66, we used the prewhitening technique to measure pulsation frequencies in

L19-2, and to reveal the multiplet structure in the highest amplitude modes. In Figure 16 we

show the 192 s pulsation mode (F1) as a typical example. Figure 16a is the original FT in the

region of F1. Figure 16b is the window function of the 192.61 second peak. The remaining

panels show the results of our iterative fitting and removal of three pulsation frequencies.

Note that there appears to be a significant residual near the m = −1 component. This is

mysterious, but not unprecedented (Kawaler et al. 1995). The identified periods of L19-2

are listed in Table 7 and presented visually in Figure 17. We do not detect any combination

frequencies in L19-2. However, the noise level is sufficiently low, that the non-existence of

combinations, particularly harmonics, constrains the ℓ values of the modes present.
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Fig. 16.— Deconstruction of F1 in L19-2. a: A Fourier transform of L19-2 near 192 s (F1).

b: A window function obtained by taking an FT of a single sinusoid (with the same period

and amplitude of the 192.61 s peak) that has been sampled in the same manner as the data.

c: An FT near F1 with a period of 192.61 s removed. d: An FT near F1 with periods of

192.61 and 192.15 s removed. e: An FT near F1 with periods of 192.61, 192.15, and 193.08

s removed.
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Table 7. L19-2 Periods and Mode Identifications

Mode Label Frequency Period σp Amplitude σamp ∆f a ℓ m b

(µHz) (sec) (sec) (mma) (mma) (µHz)

F1 5179.362 193.0740 0.0019 0.973 0.064 -12.433 1 -1

· · · 5191.795 192.6116 0.0004 5.535 0.065 · · · 1 0

· · · 5204.160 192.1540 0.0015 1.216 0.063 12.365 1 +1

F2 8789.054 113.7779 0.0004 1.766 0.067 · · · 1 or 2 0

· · · 8828.619 113.2680 0.0024 0.271 0.067 39.565 1 or 2 +2

F3 8426.324 118.6757 0.0006 1.191 0.070 -11.109 1 or 2 -1

· · · 8437.433 118.5195 0.0005 1.641 0.071 · · · 1 or 2 0

· · · 8448.580 118.3631 0.0023 0.339 0.069 11.147 1 or 2 +1

F4 2855.785 350.1664 0.0073 0.918 0.068 · · · 1 or 2 0

· · · 2868.023 348.6722 0.0192 0.347 0.068 12.238 1 or 2 +1

F5 6954.415 143.7935 0.0047 0.228 0.069 -18.112 ≤ 3 -1?

· · · 6972.527 143.4200 0.0030 0.354 0.070 · · · ≤ 3 0

· · · 6991.176 143.0375 0.0031 0.341 0.069 18.649 ≤ 3 +1

a∆f is the separation between the modes in the multiplets and the m = 0 member.

bThe m identifications in the table are based on frequency splitting alone, not on the size of the

combination peak limits.
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Fig. 17.— Prewhitened peaks in the L19-2 Fourier transform.
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Fig. 18.— Ratio of combination to parent mode amplitudes (Rc) for L19-2. The lines are
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2(Θ◦ = 16◦) (dashed line). The data points are the limits on the

harmonics (filled squares) and limits for the cross combinations for the presumed (Bradley

2001) ℓ = 1, 1 combinations (crosses), ℓ = 1, 2 combinations (open squares), and an ℓ = 2, 2

combination (star). The downward arrows on the limits indicate that the points represent

maximum values.
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We have used the multiplet structure at 192 seconds (F1) in Figure 16 to estimate the

inclination of the pulsation axis of L19-2, finding an inclination of 16 degrees. In Figure 18,

we have plotted the theoretical predictions for combination frequency amplitudes in L19-2

(Rc with Θ◦ = 16◦). Instead of measured ratios Rc, we have included the observed noise

limit (indicated by the filled squares, crosses, open squares, and stars) at the frequencies

where we expect combinations to be detected. The downward arrows indicate that all data

points are limits on detections. The limit for the harmonic of F1 implies that mode is ℓ = 1,

which is consistent with how Bradley (2001) identified it based on its multiplet structure.

The limits for F2, F3, and F4 imply that they are ℓ ≤ 2, again consistent with the multiplet

structure that suggests F2 is ℓ = 2 and F3 and F4 are ℓ = 1 (Bradley 2001). The limit for

2F5 constrains F5 to be ℓ ≤ 3.

It is gratifying to find that non-detections of combination frequencies can provide useful

seismological information, and that these corroborate independent methods in the case of

L19-2. We note that Wu’s predictions suggest that the WET data are at the threshold of

detecting the combination frequencies in L19-2. Larger telescope data on this star might be

useful as a further test of the reliability of Wu’s theory for mode identification.

GD 165

The pulsation pattern of GD 165 is very similar to that of L19-2. Both have their two

primary pulsations near 120 and 193 seconds. Bergeron & McGraw (1990) discovered GD

165 to be a ZZ Ceti star as predicted by temperatures acquired from spectroscopic analysis

placing it within the theoretical ZZ Ceti instability strip.

We included the data for GD 165 from WET observations (XCov 5, 1990 May) and from

lightcurves obtained with the CFHT presented in an analysis by Bergeron et al. (1993).

The two primary pulsations of GD 165 have multiplet structure, to which we applied the

Pesnell (1985) method and found 25 degrees for the inclination.
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Table 8. Periods and Mode Identifications for Published Data without Combination

Frequencies

Mode Label Frequency Period σp Amplitude σamp ∆f a ℓ m b Reference

(µHz) (sec) (sec) (mma) (mma) (µHz)

GD 165

F1 8305.96 120.39543 · · · 1.76 · · · -2.73 1? -1 1

· · · 8308.69 120.35585 · · · 4.79 · · · · · · 1? 0 1

· · · 8311.24 120.31905 · · · 1.36 · · · 2.55 1? +1 1

F2 5187.02 192.78879 · · · 0.85 · · · -2.98 1 or 2 -1 1

· · · 5190.00 192.67841 · · · 2.35 · · · · · · 1 or 2 0 1

· · · 5192.82 192.57373 · · · 1.91 · · · 2.82 1 or 2 +1 1

F3 c 3989.2 250.6797 · · · 0.6 · · · -7.8 1 or 2 -1? 1

· · · 3997.0 250.1864 · · · 1.0 · · · · · · 1 or 2 0 1

R548 d

F1 4691.915 213.1326 · · · 6.7 · · · · · · 1 -1 2

· · · 4699.946 212.7684 · · · 4.1 · · · 8.031 1 +1 2

F2 3639.348 274.7745 · · · 2.9 · · · · · · 1 -1 2

· · · 3646.297 274.2508 · · · 4.1 · · · 6.949 1 +1 2

F3 2997.25 333.639 0.001 1.03 0.13 · · · 1 or 2 0? 2

F4 3143.92 318.074 0.001 1.10 0.13 · · · 1 or 2 0? 2

F5 5339.43 187.286 0.001 0.43 0.12 · · · 1 or 2 0? 2

G226-29

F1 9134.7234 109.47239 0.00019 2.82 0.10 -16.2175 1 -1 3

· · · 9150.9409 109.27838 0.00051 1.08 0.10 · · · 1 0 3

· · · 9167.0187 109.08672 0.00022 2.49 0.10 16.0778 1 +1 3

Note. — The ℓ identifications are from our analysis.

a∆f is the separation between the modes in the multiplets and the m = 0 member.

bThe m identifications for GD 165 are based on frequency splitting alone, not on the size of the combination peak

limits.

cBergeron et al. (1993) listed F3 from the WET data set, but not from the combined CFHT and WET data set.

They identified the m = −1 member as questionable.

dThe pulsation modes F3, F4, and F5 are those found in the 2001 data set of Mukadam et al. (2003).

References. — (1) Bergeron et al. (1993); (2) Mukadam et al. (2003); (3) Kepler et al. (1995a).
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Bergeron et al. (1993) did not report finding any combination frequencies in the

WET and CFHT combined data for GD 165. In Figure 19, we have plotted the theoretical

predictions for GD 165 (Rc with Θ◦ = 25◦) along with the observed noise limits for putative

combination peaks. Once again the limits alone are sufficient to constrain F1 tentatively as

ℓ = 1, and the other modes to be ℓ ≤ 2, consistent with the ℓ = 1 identifications for each

mode determined by Bradley (2001) based on the multiplet structure. We list our mode

identifications in Table 8.
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arrows on the limits indicate that the points represent maximum values.
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R548

R548, also called ZZ Ceti, is the prototype of this class of stars, and is one of the brightest

and hottest. Lasker & Hesser (1971) discovered R548 to be variable. Its primary pulsation

modes are doublets at 213 and 274 seconds. Like G117-B15A, R548 has a very stable

pulsation mode at 213 seconds (Mukadam et al. 2003).

The data for R548 were gathered in the WET campaigns XCov 18 in 1999 November

and XCov 20 in 2000 November, with additional data from the CFHT and the McDonald

Observatory (Mukadam et al. 2003). The pulsation periods and amplitudes for R548 have

been taken from Mukadam et al. (2003) and are listed in Table 8. As with our assumption

for GD 244, Bradley (1998) suggests that the doublet structure in F1 and F2 results from

viewing ℓ = 1 modes at high inclination so that the third (central, m = 0) mode does not

appear. Using the maximum amplitude of the prewhitened FT of F1, at 213 s, as an estimate

on the amplitude of the m = 0 peak, we find the minimum possible inclination for R548 to

be 79 degrees. Unlike GD 244, another high inclination star, we do not detect combination

frequencies in R548.

In Figure 20, we have plotted the predictions for R548 (Rc with Θ◦ = 79◦). We include

the observed noise limit (indicated by the filled squares, crosses, open squares, and stars) at

the frequencies where we expect combinations to be detected. The limits on the harmonics

of F1 and F2 do not uniquely identify these modes, but only require that ℓ ≤ 2 for both.

2F1− appears to constrain F1 to be ℓ = 1, but the line below it at the bottom of the Figure

is an ℓ = 2, 2 combination for m = 2. However, the limits on the cross combination peaks

at the sum of the m = −1 and m = +1 parent modes do require F1 and F2 to be ℓ = 1

modes (see the circles in Figure 20), which agrees with the identifications of Bradley (1998).

The limits for the harmonics of the F3, F4, and F5 singlets are sufficient to imply that they

are ℓ ≤ 2 if m = 0, again consistent with the ℓ = 2 identification of Bradley (1998). As

with L19-2, Wu’s predictions suggest that these data are on the threshold of detecting the

combination frequencies for the two dominant modes in R548.
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Fig. 20.— Ratio of combination to parent mode amplitudes (Rc) for R548. The lines are

theoretical predictions for G0±0
1 1 �g

0
1g

0
1(Θ◦ = 79◦) (long-short-dashed line), G1+1

2 2 �g
1
2g

1
2(Θ◦ =

79◦) (dot-dashed line), G0±0
2 2 �g

0
2g

0
2(Θ◦ = 79◦) (long-dashed line), G2−2

2 2 �g
2
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−2
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(bold long-dashed line), G1−1
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1 (Θ◦ = 79◦) (dotted line), G1±0
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0
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1g

1
1(Θ◦ = 79◦) (solid line), G1±0

1 1 �g
1
1g

0
1(Θ◦ = 79◦) (solid line, not labeled

because of space), and G2+2
2 2 �g

2
2g

2
2(Θ◦ = 79◦) (dot-long-dashed line, not labeled). The

data points are the limits on the harmonics (filled squares), limits for the same-m cross

combinations (crosses), limits for the different-m cross combinations (open squares), and

limits for the cross combinations between one of the doublet modes (F1 or F2) and one of

the lower amplitude singlet modes (stars). The downward arrows on the limits indicate that

the points represent maximum values. The open square limits for F1−+F1+ and F2−+F2+

are circled for easier identification.
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G226-29

G226-29 is the brightest known ZZ Ceti star because of its proximity (d = 11.0 pc, mv =

12.22; Kepler et al. 1995a). J. T. McGraw & G. Fontaine (1980, unpublished results)

discovered its variability, finding only one pulsation mode at 109 s that is rotationally split

into a triplet. G226-29 is the hottest of the 103 known ZZ Ceti stars (see Kepler et al. 2005,

and references therein), and Kepler et al. (2000b) suggest that we are observing G226-29

just as it enters the instability strip.

We included data for G226-29 from the WET campaign XCov 7 in 1992 February

presented in Kepler et al. (1995a). We found the inclination to be 74 degrees by assuming

the evenly spaced triplet is an ℓ = 1 mode. As discussed previously, our results do not

depend sensitively on this assumption. Kepler et al. (1995a) did not detect combination

frequencies in G226-29. In Figure 21, we have plotted the predictions for G226-29 (Rc with

Θ◦ = 74◦). We include the observed noise limit (indicated by the filled squares, crosses,

and a open squares) at the frequencies where we expect combinations to be detected. The

limits for the harmonics of each member of the triplet do not uniquely identify F1, but only

require that ℓ ≤ 2. As with R548, another high inclination star with detected m = ±1

multiplet members, it is the limits on the cross combination peak at the sum of the m = −1

and m = +1 parent modes that require the G226-29 F1 mode to be ℓ = 1. This result is

consistent with the time-resolved UV spectroscopy data from HST presented in Kepler et

al. (2000b). As with L19-2 and R548, Wu’s predictions suggest that these data are on the

threshold of detecting the combination frequencies in G226-29.
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Fig. 21.— Ratio of combination to parent mode amplitudes (Rc) for G226-29. The lines

are theoretical predictions for G0±0
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2(Θ◦ = 74◦) (dot-long-dashed line, not

labeled because of space). Theoretical lines for G2±0
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2
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2(Θ◦ = 74◦) and G1±0

2 2 �g
1
2g

0
2(Θ◦ =

74◦) are not shown because they are very near to the predictions for G1±0
1 1 �g

1
1g

0
1(Θ◦ = 74◦).

The data points are the limits on the harmonics (filled squares), a limit for the nonzero

different-m cross combination (open square), and limits for the cross combinations between

the m 6= 0 modes and the central m = 0 mode (crosses). The downward arrows on the limits

indicate that the points represent maximum values.
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4. SUMMARY AND CONCLUSIONS

The main result of our study is that combination frequencies, particularly harmonics,

in the lightcurves of hot ZZ Ceti stars can be used along with the theory of Wu (2001) to

constrain and in many cases to determine uniquely the spherical harmonic index (ℓ) of the

modes that produced them. The first and easiest result to achieve with this method is to

identify those modes with ℓ > 2 and those with ℓ ≤ 2. This alone is useful for significantly

reducing the number of seismological models that need to be considered for a given star

(Bradley 1996). The theoretical mode spectrum at ℓ = 3 and higher is so dense that

there are many possible model fits to the typically sparse number of detected modes. By

eliminating from consideration the high ℓ modes, the possibility of identifying a unique fit

is improved. With the exception of a few small amplitude modes, in this paper we have

successfully eliminated ℓ > 2 identification for all modes in seven of the eight stars in our

study. The eighth star, G185-32, was previously thought to have a high ℓ mode (Thompson

et al. 2004), and our method confirms this result (though we get ℓ = 3 instead of ℓ = 4).

For modes with sufficiently large amplitude, combination frequency amplitudes are fur-

ther able to discriminate between ℓ = 1 and ℓ = 2, primarily through the use of harmonics.

The harmonics are superior for this purpose because they are known to be same-ℓ combi-

nations, and because same-ℓ combinations are well-separated in the theoretical plots of Rc.

We were able to identify modes as ℓ = 1 in six of the eight stars, and in every case our

identifications agreed with any previous independent results.

The method we have used requires only time-series photometry and simple calculations

as presented in §2. The essential part of these calculations is the evaluation of the geometric

term in Wu’s theory, which we have named G. Calculating G requires the evaluation of

integrals of spherical harmonics in the presence of a limb darkening law. To assist others in

application of this technique, we have included tabulated matrices of combination frequency

integrals for ℓ ≤ 4 in Appendix A. Applying these requires a straightforward estimation of

the inclination, which we have done using multiplet amplitudes, where detected, and limits

on the sizes of multiplet members where not detected. This has required that we assume

that modes of every m are excited to the same amplitude in every mode, and that rotation

always removes the frequency degeneracy of multiplet members. Fortunately, our results are

not highly sensitive to these assumptions.

For convenience, we summarize application of the method as follows:

1. Calculate the inclination with the Pesnell (1985) method using the ratio of the observed

amplitudes in a given multiplet. Consult the sensitivity of G to inclination (see Figures 2, 3,

and 22) to ensure that Rc is changing slowly with inclination near this value.
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2. Calculate the theoretical Rc for both ℓ = 1 and 2 by approximating τc◦ with the longest

period mode and using the bolometric correction αλ = 0.4. We use 2β + γ = −9.35 for hot,

low-amplitude DA stars, while Wu uses 2β + γ = −10 for the cool DA star G29-38.

3. Compare the calculated Rc with the measured value obtained with the amplitudes of the

combinations and their parents.

In addition to our application of this method to eight stars, we have presented analyses

of new data on GD 66 and GD 244 that will be useful for seismological study of these objects.

We have not been able to definitively decompose the multiplet structure in these stars with

single-site data, but the mode periods we have measured are given in Tables 4 and 5 for

comparison to seismological models.

More important than the results for these individual stars is our verification of a quick

and easy diagnostic tool that frequently yields definitive results. We hope the method will

find broad and immediate application in the study of numerous ZZ Ceti stars being discovered

with the Sloan Digital Sky Survey (see Mukadam et al. 2004; Mullally et al. 2005). Most of

these are fainter than the objects we have measured, but photometry on a 4-m class telescope

will be sufficient to reach useful detection limits. For example, if the V=15.56 mag star GD

66 were instead an 18th magnitude star, observations with a 4-m class telescope would reveal

four of the combination frequency peaks that we identified, including the harmonics of the

two highest amplitude peaks. Further study of the objects in this paper will also be useful,

both to secure definitive ℓ identifications of the smaller amplitude modes and to detect those

combinations that hover just below the detection limits of the present data. Observations

are currently in progress using the 4.1-m SOAR telescope.

This work was supported by a CAREER grant from the National Science Foundation

(AST 000-94289) and by two grants from the North Carolina Space Grant Consortium. We

thank S. O. Kepler for his helpful comments and suggestions. We also thank the referee,
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A. SELECTED SOLUTIONS FOR G
mi±mj

ℓi ℓj
�gmi

ℓi
g
mj

ℓj
(Θ◦)

The following tables contain solutions for G
mi±mj

ℓi ℓj
�gmi

ℓi
g
mj

ℓj
(Θ◦) (see equations 4 and 5)

for the values of ℓ and m that are potentially useful for mode identification with photometry

using the theory of Wu. Table 9 contains solutions for ℓi = ℓj = 1. Tables 10 and 11 contain

solutions for ℓi = 1, ℓj = 2 and ℓi = ℓj = 2. Finally, Table 12 contains solutions for ℓi = 3 or
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4 and ℓj ≤ 4 with mi = mj = 0. For comparison with Figures 2 and 3, we include a plot of

the variations of G with inclination for ℓ = 3, 3 and ℓ = 4, 4 in Figure 22.
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Table 9. Values of G
mi+mj

1 1 �gmi

1 g
mj

1 (Θ◦)

mi\mj -1 0 +1

-1 0.65 0.65 −0.65 − 0.90
sin2(Θ◦)

0 0.65 0.65 + 0.45
cos2(Θ◦)

-0.65

+1 −0.65 − 0.90
sin2(Θ◦)

-0.65 0.65

Note. — For values of G
mi−mj

1 1 �gmi

1 g
mj

1 (Θ◦), reverse the sign

of mj .

Table 10. Values of G
mi+mj

1 2 �gmi

1 g
mj

2 (Θ◦)

mi\mj -2 -1 0 +1 +2

-1 0.27 0.27 −0.81 sin2(Θ◦)−0.58
3 cos2(Θ◦)−1 −0.27 − 1.12

sin2(Θ◦)
0.27 + 2.24

sin2(Θ◦)

0 0.27 0.27 + 0.56
cos2(Θ◦)

0.81 cos2(Θ◦)+1.97
3 cos2(Θ◦)−1

−0.27 − 0.56
cos2(Θ◦)

0.27

+1 −0.27 − 2.24
sin2(Θ◦)

−0.27 − 1.12
sin2(Θ◦)

0.81 sin2(Θ◦)+0.58
3 cos2(Θ◦)−1

0.27 -0.27

Note. — For values of G
mi−mj

1 2 �gmi

1 g
mj

2 (Θ◦), reverse the sign of mj.



Table 11. Values of G
mi+mj

2 2 �gmi

2 g
mj

2 (Θ◦)

mi\mj -2 -1 0 +1 +2

-2 -0.20 -0.20
0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)
0.20 − 1.87

sin2(Θ◦)

−0.20 sin4(Θ◦)+3.74 sin2(Θ◦)+2.66

sin4(Θ◦)

-1 -0.20
0.20 cos4(Θ◦)−0.66 cos2(Θ◦)+0.47

cos2(Θ◦) sin2(Θ◦)

−0.59 cos2(Θ◦)+1.13

3 cos2(Θ◦)−1
−

0.20 cos4(Θ◦)+0.27 cos2(Θ◦)+1.13

cos2(Θ◦) sin2(Θ◦)
−0.20 + 1.87

sin2(Θ◦)

0
0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)

−0.59 cos2(Θ◦)+1.13

3 cos2(Θ◦)−1

−1.78 cos4(Θ◦)+6.80 cos2(Θ◦)+5.66

(3 cos2(Θ◦)−1)2
0.59 cos2(Θ◦)−1.13

3 cos2(Θ◦)−1

0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)

+1 0.20 − 1.87
sin2(Θ◦)

−
0.20 cos4(Θ◦)+0.27 cos2(Θ◦)+1.13

cos2(Θ◦) sin2(Θ◦)

0.59 cos2(Θ◦)−1.13

3 cos2(Θ◦)−1

0.20 cos4(Θ◦)−0.66 cos2(Θ◦)+0.47

cos2(Θ◦) sin2(Θ◦)
0.20

+2
−0.20 sin4(Θ◦)+3.74 sin2(Θ◦)+2.66

sin4(Θ◦)
−0.20 + 1.87

sin2(Θ◦)

0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)
0.20 -0.20

Note. — For values of G
mi−mj
2 2 �g

mi
2 g

mj
2 (Θ◦), reverse the sign of mj .
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Table 12. Values of G0±0
ℓi ℓj

�g0ℓig
0
ℓj
(Θ◦)

ℓi\ℓj 3 4

1 −0.78 cos4(Θ◦)+3.82 cos2(Θ◦)−1.12
1.67 cos4(Θ◦)−cos2(Θ◦)

−6.18 cos4(Θ◦)+19.41 cos2(Θ◦)−9
−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1

2 −1.92 cos4(Θ◦)+4.87 cos2(Θ◦)+9.86
(3 cos2(Θ◦)−1)(1.67 cos2(Θ◦)−1)

40.38 cos6(Θ◦)−73.72 cos4(Θ◦)+144.05 cos2(Θ◦)−39.04
(3 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

3 5.56 cos6(Θ◦)−10 cos4(Θ◦)+15.17 cos2(Θ◦)+12.40
(1.67 cos3(Θ◦)−cos(Θ◦))2

35 cos6(Θ◦)−75 cos4(Θ◦)+85 cos2(Θ◦)+153.69
(1.67 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

4 35 cos6(Θ◦)−75 cos4(Θ◦)+85 cos2(Θ◦)+153.69
(1.67 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

−1225 cos8(Θ◦)+2660 cos6(Θ◦)−2070 cos4(Θ◦)+1769.26 cos2(Θ◦)+1400.80
(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)2
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Fig. 22.— G with mi = mj = 0 (see equation 9) plotted as a function of inclination angle

(Θ◦). The scale of G for ℓi = ℓj = 4 (solid line) is a factor of ten larger than the scale of

G for ℓi = ℓj = 3 (dotted line). The predicted amplitudes of the combination frequencies

show a dramatic increase for inclinations greater than 20◦, and the predictions less than 20◦

increase more rapidly than the cases for ℓ = 1 and 2 (see Figures 2 and 3).
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