535 research outputs found

    Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin

    Get PDF
    Masking is said to occur when a mask stimulus interferes with the visibility of a target (test) stimulus. One widely held view of this process supposes interactions between mask and test mechanisms (cross-channel masking), and explicit models (e.g., J. M. Foley, 1994) have proposed that the interactions are inhibitory. Unlike a within-channel model, where masking involves the combination of mask and test stimulus within a single mechanism, this cross-channel inhibitory model predicts that the mask should attenuate the perceived contrast of a test stimulus. Another possibility is that masking is due to an increase in noise, in which case, perception of contrast should be unaffected once the signal exceeds detection threshold. We use circular patches and annuli of sine-wave grating in contrast detection and contrast matching experiments to test these hypotheses and investigate interactions across spatial frequency, orientation, field position, and eye of origin. In both types of experiments we found substantial effects of masking that can occur over a factor of 3 in spatial frequency, 45° in orientation, across different field positions and between different eyes. We found the effects to be greatest at the lowest test spatial frequency we used (0.46 c/deg), and when the mask and test differed in all four dimensions simultaneously. This is surprising in light of previous work where it was concluded that suppression from the surround was strictly monocular (C. Chubb, G. Sperling, & J. A. Solomon, 1989). The results confirm that above detection threshold, cross-channel masking involves contrast suppression and not (purely) mask-induced noise. We conclude that cross-channel masking can be a powerful phenomenon, particularly at low test spatial frequencies and when mask and test are presented to different eyes. © 2004 ARVO

    Size matters, but not for everyone:Individual differences for contrast discrimination

    Get PDF
    It is very well known that contrast detection thresholds improve with the size of a grating-type stimulus, but it is thought that the benefit of size is abolished for contrast discriminations well above threshold (e.g., Legge, G. E., & Foley, J. M. (1980)]. Here we challenge the generality of this view. We performed contrast detection and contrast discrimination for circular patches of sine wave grating as a function of stimulus size. We confirm that sensitivity improves with approximately the fourth-root of stimulus area at detection threshold (a log-log slope of -0.25) but find individual differences (IDs) for the suprathreshold discrimination task. For several observers, performance was largely unaffected by area, but for others performance first improved (by as much as a log-log slope of -0.5) and then reached a plateau. We replicated these different results several times on the same observers. All of these results were described in the context of a recent gain control model of area summation [Meese, T. S. (2004)], extended to accommodate the multiple stimulus sizes used here. In this model, (i) excitation increased with the fourth-root of stimulus area for all observers, and (ii) IDs in the discrimination data were described by IDs in the relation between suppression and area. This means that empirical summation in the contrast discrimination task can be attributed to growth in suppression with stimulus size that does not keep pace with the growth in excitation. © 2005 ARVO

    A two-stage model of orientation integration for Battenberg-modulated micropatterns

    Get PDF
    The visual system pools information from local samples to calculate textural properties. We used a novel stimulus to investigate how signals are combined to improve estimates of global orientation. Stimuli were 29 × 29 element arrays of 4 c/deg log Gabors, spaced 1° apart. A proportion of these elements had a coherent orientation (horizontal/vertical) with the remainder assigned random orientations. The observer's task was to identify the global orientation. The spatial configuration of the signal was modulated by a checkerboard pattern of square checks containing potential signal elements. The other locations contained either randomly oriented elements (''noise check'') or were blank (''blank check''). The distribution of signal elements was manipulated by varying the size and location of the checks within a fixed-diameter stimulus. An ideal detector would only pool responses from potential signal elements. Humans did this for medium check sizes and for large check sizes when a signal was presented in the fovea. For small check sizes, however, the pooling occurred indiscriminately over relevant and irrelevant locations. For these check sizes, thresholds for the noise check and blank check conditions were similar, suggesting that the limiting noise is not induced by the response to the noise elements. The results are described by a model that filters the stimulus at the potential target orientations and then combines the signals over space in two stages. The first is a mandatory integration of local signals over a fixed area, limited by internal noise at each location. The second is a taskdependent combination of the outputs from the first stage

    The Effect of Interocular Phase Difference on Perceived Contrast

    Get PDF
    Binocular vision is traditionally treated as two processes: the fusion of similar images, and the interocular suppression of dissimilar images (e.g. binocular rivalry). Recent work has demonstrated that interocular suppression is phase-insensitive, whereas binocular summation occurs only when stimuli are in phase. But how do these processes affect our perception of binocular contrast? We measured perceived contrast using a matching paradigm for a wide range of interocular phase offsets (0–180°) and matching contrasts (2–32%). Our results revealed a complex interaction between contrast and interocular phase. At low contrasts, perceived contrast reduced monotonically with increasing phase offset, by up to a factor of 1.6. At higher contrasts the pattern was non-monotonic: perceived contrast was veridical for in-phase and antiphase conditions, and monocular presentation, but increased a little at intermediate phase angles. These findings challenge a recent model in which contrast perception is phase-invariant. The results were predicted by a binocular contrast gain control model. The model involves monocular gain controls with interocular suppression from positive and negative phase channels, followed by summation across eyes and then across space. Importantly, this model—applied to conditions with vertical disparity—has only a single (zero) disparity channel and embodies both fusion and suppression processes within a single framework

    Pressure studies of impurity levels in AlxGa1-xAs

    Get PDF
    doi: 10.1088/0268-1242/4/4/033The authors present a study of the deep and shallow donor levels under hydrostatic pressure. The shallow levels follow the conduction bands, while the deep levels are strongly sublinear with pressure. The temperature dependence of the intensities and energies is used to obtain an energy level diagram of the deep levels at high pressures.This work was supported by theU S Army under grant number DAAL03-86K-0083, the US Department of Energy under grant number DE-AC02 84ER45048, and Amoco Corporation. M Chandrasekhar is a n A P Sloan Foundation Fellow

    Creativity Bento Box: a physical resource pack to support interaction in virtual space

    Get PDF
    The Creativity Bento Box is a physical resource pack, designed to support casual social interaction and break taking in an intensive, computer-mediated social activity. It was developed within the Creativity Greenhouse project, which piloted a mechanism to create research proposals and distribute funding at a distance. This involved facilitated phases of collaboration and competition over multiple days of computer-mediated work, where participants communicate and interact through a virtual world. During the iterative development process, the lack of time for socialising, the intense focus on virtual resources, and a lack of time spent away from the screen were reported as negative issues in feedback from participants. We report on the development of the Creativity Bento Box and how it helped to address these issues. By providing physical resources that contrasted with the properties of the virtual world, it supported people to socialise and take breaks from their primary activity, allowed them to include physical space and artefacts in their interactions, and provoked moves away from the otherwise intense focus on the computer. We reflect on the roles of the Bento Box as a gift, in bridging between physical and virtual contexts, its higher suitability during the earlier phases of ideation and group development, and its perception by participants as something ‘framed’. Through this, we highlight the underexplored potential of using physical, offline resources as a means to solve difficulties in distanced social interactions

    Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells

    No full text
    Ca2+ channels mediate excitation-secretion coupling and show little inactivation at sensory ribbon synapses, enabling reliable synaptic information transfer during sustained stimulation. Studies of Ca2+-channel complexes in HEK293 cells indicated that Ca2+-binding proteins (CaBPs) antagonize their calmodulin-dependent inactivation. Although human mutations affecting CABP2 were shown to cause hearing impairment, the role of CaBP2 in auditory function and the precise disease mechanism remained enigmatic. Here, we disrupted CaBP2 in mice and showed that CaBP2 is required for sound encoding at inner hair cell synapses, likely by suppressing Ca2+-channel inactivation. We propose that the number of activatable Ca2+ channels at the active zone is reduced when CaBP2 is lacking, as is likely the case with the newly described human CABP2 mutation

    TYMSTR, a putative chemokine receptor selectively expressed in activated T cells, exhibits HIV-1 coreceptor function

    Get PDF
    AbstractBackground: Chemokines bind to specific receptors and mediate leukocyte migration to sites of inflammation. Recently, some chemokine receptors, notably CXCR4 and CCR5, have been shown to be essential fusion factors on target cells for infection by human immunodeficiency virus (HIV); the chemokines bound by these receptors have also been shown to act as potent inhibitors of HIV infection. Here, we describe the isolation of a novel, putative chemokine receptor.Results: We have isolated the cDNA for a putative human chemokine receptor, which we have termed TYMSTR (T-lymphocyte-expressed seven-transmembrane domain receptor). The TYMSTR gene is localized to human chromosome 3 and encodes a protein that has a high level of identity with chemokine receptors. TYMSTR mRNA was selectively expressed in interleukin-2-stimulated T lymphocytes but not in freshly isolated lymphocytes and leukocytes or related cell lines. The natural ligand for TYMSTR was not identified among 32 human chemokines and other potential ligands. Cells co-expressing TYMSTR and human CD4 fused with cells expressing envelope glycoproteins of macrophage (M)-tropic HIV-1 as well as T-cell line (T)-tropic HIV-1 isolates. Addition of infectious, T-tropic HIV-1 particles to TYMSTR/CD4-expressing cells resulted in viral entry and proviral DNA formation.Conclusions: Our findings demonstrate that TYMSTR, in combination with CD4, mediates HIV-1 fusion and entry. The high-level expression of TYMSTR in CD4+ T lymphocytes and the selectivity of this receptor for T-tropic and M-tropic HIV-1 strains indicates that TYMSTR might function as HIV coreceptor at both early and late stages of infection
    • …
    corecore