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The visual system pools information from local samples
to calculate textural properties. We used a novel
stimulus to investigate how signals are combined to
improve estimates of global orientation. Stimuli were 29
· 29 element arrays of 4 c/deg log Gabors, spaced 18
apart. A proportion of these elements had a coherent
orientation (horizontal/vertical) with the remainder
assigned random orientations. The observer’s task was
to identify the global orientation. The spatial
configuration of the signal was modulated by a
checkerboard pattern of square checks containing
potential signal elements. The other locations contained
either randomly oriented elements (‘‘noise check’’) or
were blank (‘‘blank check’’). The distribution of signal
elements was manipulated by varying the size and
location of the checks within a fixed-diameter stimulus.
An ideal detector would only pool responses from
potential signal elements. Humans did this for medium
check sizes and for large check sizes when a signal was
presented in the fovea. For small check sizes, however,
the pooling occurred indiscriminately over relevant and
irrelevant locations. For these check sizes, thresholds for
the noise check and blank check conditions were similar,
suggesting that the limiting noise is not induced by the
response to the noise elements. The results are
described by a model that filters the stimulus at the
potential target orientations and then combines the
signals over space in two stages. The first is a mandatory
integration of local signals over a fixed area, limited by
internal noise at each location. The second is a task-
dependent combination of the outputs from the first
stage.

Introduction

Combining orientation signals over space

The perception of coherent textures requires the
integration of orientation signals over space. The
definition of regions in an image that ‘‘belong’’ to the
same texture is a necessary intermediate step to
higher-level processes, such as finding boundaries
between different textures (Marr, 1982; Landy &
Graham, 2004). This study focuses on examining the
strategies used for choosing which local samples to
combine over space to calculate a global orientation
estimate from a stimulus (which we shall call the
‘‘pooling strategy’’) rather than focusing on address-
ing the process by which the individual local signals
are combined (which we shall call the ‘‘combination
process’’ as investigated previously by Dakin & Watt,
1997; Jones, Anderson, & Murphy, 2003; Webb,
Ledgeway, & McGraw, 2010; Husk, Huang, & Hess,
2012). Our observers are tasked with making global
orientation judgments for displays containing orien-
tation micropatterns with various orientations. By
manipulating the spatial layout of these micropat-
terns, it is possible to distinguish between some of the
different spatial-pooling strategies that have been
proposed previously.
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Signal-combination processes

Effects of spatial configuration aside, the combina-
tion process by which the visual system calculates a
global orientation from an array of local orientations
has been found to depend on the task set to the
observer. Similar dependencies have also been reported
in studies that investigated the integration of local
motion signals. When the observer is required to
distinguish between stimuli with weak horizontal or
vertical orientation coherence (i.e., with a large
difference between the two target orientations), ob-
servers filter the image at the two potential target
orientations and then choose the orientation of the
more strongly activated filter (Husk et al., 2012). A
winner-takes-all process similar to this has been found
in analogous motion studies performed in monkeys
(Salzman & Newsome, 1994).

Under conditions in which finer judgments of the
global orientation of a texture need to be made, the
observer calculates the vector-average of the local
orientations (Dakin & Watt, 1997; Webb et al., 2010).
Similar changes in the combination process used by
observers based on the difference between the
discriminated orientations have been demonstrated in
the motion domain (Nichols & Newsome, 2002;
Webb, Ledgeway, & McGraw, 2007). The large
orientation differences used in the experiments
reported here would be expected to cause the observer
to max over filter outputs (the design of this study is
similar to that of Husk et al., 2012). For our purposes
however, it is not necessary to assume that the
observer makes use of a particular combination
process. Models that use a vector-averaging combi-
nation process produce very similar predictions to
those made by the filter-maxing model presented in
the body of this paper (see Appendix C).

Pooling strategies and summation effects

Most signal-combination processes would predict
an improvement in performance for detecting weak
signals as the number of samples increases. Provided
that the noise affecting each sample is at least
partially independent, the limiting effect of the noise
on performance can be reduced by exploiting the
information from multiple samples. Pooling over
additional samples in this manner will improve
performance regardless of whether the observer is
filter-maxing or vector-averaging. There are various
possible strategies for pooling signals over space,
which make different predictions for how perfor-
mance should improve with the availability of
additional signal samples. Previous work in which the
number of samples available for combination is

varied have reported conflicting results. Dakin (2001)
found a completely flexible combination with respect
to signal location over a proportion of the samples in
the display. This was presented as an ‘‘information
limit’’ for orientation integration. Other studies have
shown either improvements reflecting ideal summa-
tion under a flexible pooling strategy up to some
maximum integration area (Jones et al., 2003) or no
benefit from increasing the number of samples
whatsoever (Husk et al., 2012).

This study

The summation effects resulting from increasing
the number of samples available for integration are
investigated here using psychophysics and computer
modeling. The novel ‘‘orientation Battenberg’’ stimuli
used allow for manipulation of the spatial arrange-
ment of signal within a stimulus of fixed extent and
eccentricity. This reduces the confounding effects of
any inhomogeneities in sensitivity for performing the
global orientation task (similar to the contrast
Battenberg stimuli used by Meese, 2010). Jones et al.
(2003) suggested that such an effect might have
reduced the level of summation measured in their
study. Our results show approximately linear sum-
mation over short distances (reflecting the summation
of signal against a constant noise floor with an
increasing number of samples) followed by a perfor-
mance improvement consistent with ideal summation
over longer distances (reflecting summation of both
signal and the variances of per-location noise as the
number of sampled locations increases). Previous
investigations of the mechanisms underlying the
perception of coherent texture have described models
featuring an initial local integration stage in which the
orientation statistics at each location are estimated,
followed by further operations performed over those
local estimates (Vorhees & Poggio, 1988; Sagi, 1990;
Dakin & Watt, 1997). A two-stage model of this kind
is supported by this study, the results of which suggest
that observers perform mandatory local integration
(affected by internal noise at each location) followed
by flexible long-range pooling.

Methods

Equipment

Stimuli were presented on a gamma-corrected CRT
monitor using Psychtoolbox (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007) running under MATLAB. The
data collection for these experiments was split between
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two different equipment setups. The first was an Apple
MacbookProwith anNVIDIAGeForce 9600Mgraphics
card presenting stimuli on a Philips MGD403 monitor;
the second was an AppleMacbook Pro with anNVIDIA
GeForce 8600M graphics card presenting stimuli on a
Compaqmonitor.Themonitorshadrefresh ratesof 75Hz
and 90 Hz and mean luminances of 77.2 and 26.9 cd/m2,
respectively. Observers viewed the monitors from a
distance of 0.51 m, at this viewing distance giving 6 pixels
per cycle for the 4 c/deg stimuli used here.

Stimuli

Stimuli were 29 · 29 element arrays of 4 c/deg
cosine-phase log-Gabor patches (spatial frequency and
orientation bandwidths of 1.6 octaves and 6258,
respectively; see Meese, 2010), spaced 1 degree apart in
a square grid. Stimuli were displayed at 80% delta-
contrast

cdelta ¼
maxðjL� LmeanjÞ

Lmean
; ð1Þ

where L is the stimulus image and Lmean its mean
luminance. Each log-Gabor was either a potential
signal element or a noise element. Potential signal
elements had probability P(coherence) of assuming the
target orientation (which was either horizontal or
vertical); otherwise, they assumed an orientation drawn
at random from a uniform distribution. Therefore, on a
trial-by-trial basis, a particular coherence level did not
guarantee that a certain number of signal elements
would appear in the stimulus, but over many trials, the
average (or ‘‘expected’’) proportion of signal elements
in the stimulus would be equal to the coherence level.
All noise elements assumed random orientations. The
range of potential element orientations was 08 to 1798
(orientations were rounded to the nearest degree before
stimulus generation).

Two stimulus types were tested: ‘‘full’’ and
‘‘checked.’’ In the full stimuli, all elements were

potential signal elements. For the checked stimuli, the
potential signal elements were assigned to locations in
the stimulus defined by a checkerboard (a square-wave
plaid). This gave a stimulus tiled with square signal and
nonsignal regions. Two types of checked stimuli were
tested. For the ‘‘noise check’’ condition, the nonsignal
regions contained randomly oriented elements. There-
fore, each of the checked conditions contained the same
total number of elements but approximately half as
many signal elements as the full condition (see Table 1).
For the ‘‘blank check’’ condition, the nonsignal regions
were blank, and so the checked stimuli contained
approximately half as many elements as the full stimuli.

The spatial arrangement of the signal regions in the
stimulus was manipulated by adjusting the frequency
and the phase of the square-wave plaid modulator that
defined the checkerboard. Decreasing or increasing the
frequency made the signal regions larger or smaller,
respectively, and this was used to create the different
check sizes. These gave stimuli tiled with 1-, 3-, 5-, 9-,
and 15-element square signal regions (i.e., the largest
had 15 · 15 element ‘‘checks’’). The phase of the
modulation was also manipulated to test stimuli in
both the cosine (/¼ 908) and anticosine (/ ¼ 2708)
phases. Thus, in the /¼908 condition, the dispersion of
signal was such that it was included in the central part
of the display whereas in the / ¼ 2708 condition there
was no signal in the central region. Miniature example
stimuli are shown in Figure 1. Full-size examples of
each of the stimuli used in the experiments are available
as Supplementary material (Figures S1–S21).

Procedures

A blocked single-interval identification task was
performed to find the orientation identification
threshold for each check size, phase (/¼ 908 vs. 2708),
and checked Battenberg type (noise check vs. blank
check). Thresholds were tracked using a pair of three-
down one-up staircases (maximum 120 trials or 12
reversals), one for horizontal and the other for vertical

Check size

Modulator phase: / ¼ 908 Modulator phase: / ¼ 2708

# signal elements Proportion # signal elements Proportion

1 · 1 421 50.1% 420 49.9%

3 · 3 420 49.9% 421 50.1%

5 · 5 420 49.9% 421 50.1%

9 · 9 445 52.9% 396 47.1%

15 · 15 421 50.1% 420 49.9%

Table 1. Numbers and proportions of potential signal elements in the various checked ‘‘Battenberg’’ stimuli used in this study. Notes:
The total number of elements in the full Battenberg stimulus was 841. Noise check stimuli always contained 841 elements with the
nonsignal elements set to random orientations. Blank check stimuli did not contain any elements other than those that were
potential signal elements.
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signal trials. The staircases for the two signal orienta-
tions were interleaved randomly. Once the staircase for
one orientation had terminated, dummy trials (in which
no data were recorded) were still presented with that
orientation until the staircase for the other orientation
terminated. Staircases started at a high signal level to
inform the observers of what stimulus to expect in each
block. Stimuli were presented for 250 ms. Stimulus
onset was accompanied by a beep. Observers main-
tained continuous central fixation with the aid of a
black fixation dot that was shown between trials. The
observers pressed a key on a keyboard to indicate
whether the stimulus contained either ‘‘horizontal’’ or
‘‘vertical’’ coherence. The response was followed by a
feedback beep that indicated whether it was correct or
incorrect and then a 300-ms pause before the presen-

tation of the next stimulus. Each observer performed
four repetitions for each combination of check size
(full, 1, 3, 5, 9, and 15), Battenberg modulator phase (/
¼ 908 or 2708), and Battenberg type (noise check or
blank check). As the full stimulus was identical
regardless of Battenberg type or modulator phase, each
observer collected four times as much data for this
condition (16 repetitions). These were averaged to give
a single threshold per observer.

Observers

Seven observers were used. Five were experienced
psychophysical observers (ASB, DHB, JSH, RJS, and
SAW), including two of the authors (ASB and JSH).

Figure 1. Example of the stimulus design used in these experiments. The stimuli shown are 7 · 7 element arrays (smaller than the 29

· 29 arrays used in our experiments) with a 3 · 3 check size. The figure includes /¼ 908 and 2708 check versions of the noise check

and blank check stimuli, each shown at 100% coherence.
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Two were naı̈ve undergraduates (LFE and VRP). All
had either normal or corrected-to-normal vision.
Observers DHB, RJS, and SAW were tested on the first
equipment setup described above. Observers JSH,
LFE, and VRP were tested on the second equipment
setup. Observer ASB was tested on the first setup for
the noise check and on the second setup for the blank
check conditions. The study was conducted in accor-
dance with the Declaration of Helsinki.

Analysis

Data from the horizontal and vertical staircases were
combined into a single psychometric function for each
repetition, condition, and observer. This was then fitted
by a cumulative normal function using Palamedes
(Prins & Kingdom, 2009). The fitted function gave the
probability of responding ‘‘horizontal’’ to either a
vertical stimulus (plotted as negative coherence) or a
horizontal stimulus (plotted as positive coherence). The
coherence level at which the function reached P(‘‘Hor-
izontal’’) ¼ 0.5 gave the bias for the observer
categorizing a stimulus as horizontal rather than
vertical (the distributions of the biases found for each
observer are presented in Appendix A), and the
orientation identification threshold could be calculated
as the difference between the coherence level at this
point and that at which P(‘‘Horizontal’’) ¼ 0.75.

Results

Noise check

The orientation identification thresholds averaged
across the seven observers are shown in Figure 2. The
three rows present the data plotted as the expected
number of signal elements in the stimulus at threshold
(Figure 2a and b); the threshold probability of the
elements in the signal region assuming the target
orientation (Figure 2c and d), which is equivalent to the
expected proportion of signal elements within the signal
regions at threshold (hereafter termed the ‘‘coherence
threshold’’); and the expected proportion of signal
elements across the entire stimulus at threshold (Figure
2e and f). In subsequent figures, the metric shown in
Figure 2c and d is used with this coherence threshold
for each checked stimulus plotted as a multiple relative
to that for the full condition (which had a coherence
threshold of approximately 10%).

Figure 2c presents the coherence thresholds for the
noise check condition. For smaller check sizes (1 to 3),
the thresholds for the checked stimuli were approxi-
mately double that for the full stimulus. This means

that around the same total number of signal elements
across the entire stimulus were required to reach the
threshold performance level in each case (see Figure
2a). For medium sizes (5 to 9), the threshold elevation
decreased to a factor of

ffiffiffi
2
p

. This is consistent with a
strategy that uses information from potential signal
regions but ignores irrelevant (noise-only) regions as
the noise resulting from the combination of multiple
equally noisy samples is proportional to the square root
of the number of samples combined (a simple ‘‘sum of
variances’’ rule). As the stimuli were blocked by check
size and modulator phase, the observer could predict,
in each trial, which areas of the display were potential
signal regions and which would contain only irrelevant
noise.

One of the purposes of the Battenberg stimulus
design is to reduce the effect of visual field inhomo-
geneities in sensitivity on the measurement of area
summation (Meese & Summers, 2007; Meese, 2010).
For stimuli with large check sizes relative to their
extent, however, these effects will return. For the
largest (15) check size in Figure 2c, performance
diverged dependent on whether the stimulus was in the
/ ¼ 908 (foveal signal, peripheral noise) or / ¼ 2708
(foveal noise, peripheral signal) phase. Coherence
thresholds were almost as low for the /¼ 908 stimulus
as they were for the full stimulus. This means that the
observers required around half as many signal
elements across the entire stimulus when most of those
elements were presented in the center of the display
(Figure 2a). For the / ¼ 2708 stimulus, coherence
thresholds were approximately double that of the full
stimulus. Therefore observers required the same
number of signal elements in the largest / ¼ 2708
stimulus as they did in the full stimulus (because the
full stimulus has approximately twice the checked
stimulus’s signal area). This behavior would be
consistent either with a relative insensitivity for this
task in the periphery or a failure in segregating the
noise present in the center of the display (this is
discussed further below).

Blank check

Figure 2d shows the coherence thresholds for the
blank check condition. For the smaller check sizes in
the blank check condition, coherence thresholds
increase to approximately double that for the full
stimulus in a similar manner to that seen in the noise
check condition. This is unexpected as the predicted
coherence threshold for this condition based on the
stimulus properties alone would be a factor of

ffiffiffi
2
p

above that for the full condition (there are no noise-
only elements, so the threshold would be proportional
to the square root of the number of elements in the
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display: the sum of variances rule again). These results
suggest that the performance-limiting noise for the
noise check task does not arise from the responses to
the interstitial noise elements; otherwise, the removal of
these elements in the blank check condition would
result in a decrease in threshold. On the other hand,
however, the noise cannot be ‘‘late’’ and constant

across conditions as this would predict the same

performance level for all of the checked stimuli.

Instead, these results suggest that observers are

mandatorily integrating internal noise from blank

display regions (or are limited by a noise source that is

proportional to the monitored area) for the smaller

Figure 2. Thresholds from the identification task (averaged over seven observers) shown in three different ways. The results are

plotted here as the expected number of signal elements in the stimulus at threshold (a–b), the expected percentage of signal

elements in the potential signal regions at threshold (c–d), and the expected percentage of signal elements in the entire stimulus at

threshold (e–f). The metric used in other results figures in this paper is that in c and d with these ‘‘coherence thresholds’’ expressed
as multiples relative to that of the full (F) stimulus. Error bars show 61 standard error here and in all other graphs.
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check sizes but are able to exclude this noise for the
larger check sizes.

The similarities in the noise check and blank check
data shown in Figure 2c and d can be confirmed by
looking ahead to Figure 5, which compares the
thresholds from these conditions directly by showing
the amount of threshold elevation caused by the
presence of the noise checks. Up to the largest (15)

check size, thresholds for the /¼ 908 stimuli are similar
(threshold elevation factor of approximately one),
suggesting that the pooling of samples (and segregation
of noise) in these two conditions is similar. For the /¼
2708 stimuli, however, threshold elevation increases
with check size. Performance for the largest (15) / ¼
2708 stimulus in the blank check condition is a factor offfiffiffi

2
p

better than that in the noise check condition,

Figure 3. Coherence thresholds for the checked stimuli expressed as multiples of the full stimulus threshold, plotted with predictions

from the SA (a–b), SI (c–d), and TS (e–f) models. Each row shows the same averaged data replotted from Figure 2c and d. The only

fitted parameter was k, the size of the pooling region in the TS model (3 · 3). This fitting was performed by hand (Appendix B). RMS

errors between the model predictions and the data are shown in dB.
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meaning that at least part of the deficit for detecting

that stimulus was due to inefficient pooling of noise in

the noise check condition rather than a relative

insensitivity for performing the task in the periphery

(e.g., it may be more difficult for the observer to keep

track of the signal and nonsignal regions in the /¼2708

noise check condition).

Modeling

Monte Carlo simulations

A set of models was developed to investigate the
pooling strategy used by the observers. The initial aim

Figure 4. Coherence thresholds plotted with predictions from the TN model fitted to the blank check data (a–b) and from the TA

model with the best-fitting parameters for the noise check data (TA1, c–d) and the best-fitting parameters for the blank check data

(TA2, e–f). Each row shows the same averaged data replotted from Figure 2c and d. The fitted parameters were the size of the pooling

region (k), the standard deviation of the internal noise (rint), and the size of the integration aperture (a).
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of the modeling was to explain the surprising equiva-
lence between the smallest check sizes in the noise check
and blank check conditions (see Figure 2c and d),
which would not be expected if the source of the
limiting noise was in the responses to the individual
micropattern elements (as the additional randomly
oriented elements in the noise check condition would
cause thresholds for those stimuli to be higher). Model
predictions were obtained using stochastic Monte
Carlo methods. A set of model observers was developed
with different pooling strategies in MATLAB and run
through 2,000 simulated trials per stimulus level of a
‘‘method of constant stimuli’’ version of the experi-
ment. The coherence thresholds for each model
observer were calculated using the simulated data and
expressed as multiples of the full stimulus threshold,
allowing them to be compared to the human results
without the need for fitting. Three fitted parameters
(the size of the local pooling regions k, the standard
deviation of the internal noise rint, and the size of the
global pooling region a) were then added in order to
develop a model that provided a close account of the
data. These parameters were each fitted by hand (see
Appendix B).

The filter-maxing combination processes

Several combination processes for the calculation of
global orientation from individual local samples have
been suggested previously. Here we implement the
strongest candidate for this task, in which the observer

selects the orientation of the most strongly activated
oriented filter (after Jones et al., 2003; Husk et al.,
2012). This choice is not crucial to our findings,
however, and a set of models developed using a vector-
averaging combination process made similar predic-
tions (Appendix C). In our filter-maxing model, the
stimulus is first filtered at the two potential target
orientations. The filter elements are a pair of log-Gabor
elements with the same tuning properties as those used
in the generation of the stimuli (spatial frequency
bandwidth of 1.6 octaves and orientation bandwidth of
6258). These bandwidths are typical of those used
previously in the literature to model simple cell
responses and compatible with those found in neuro-
physiological investigations (De Valois & De Valois,
1990; Meese, 2010). As our filter elements were
identical to the target elements in our stimuli, they also
behaved as the ideal detector for those elements. The
filter outputs are rectified and passed to the pooling
stage. In the pooling stage, the outputs can be weighted
according to their expected signal-to-noise ratio (de-
pendent on the pooling strategy in operation, see
below). The weighted filter responses are then summed
over the image for each orientation, and these values
are compared to each other. The model observer picks
the orientation with the greater filter response.

Pooling strategies

The simplest pooling strategy considered is the ‘‘sum
all’’ (SA) model, in which the observer combines

Figure 5. Threshold elevation introduced by the noise check elements, calculated from the data in Figure 2c and d as the thresholds

from the noise check condition divided by the thresholds from the blank check condition. The predicted threshold elevations from

each of the models shown in Figures 3 and 4 are also plotted here. Only the SA and TS models predict any systematic elevation effect,

and neither of those match the pattern seen in the data.
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information from every element in the stimulus with an
equal weighting regardless of whether it is a noise or
potential signal element. The model with this strategy
predicts that within each condition (noise check and
blank check), there should be no effect of check size or
modulator phase. The predicted coherence threshold
for the noise check stimuli is approximately twice that
for the full stimulus (Figure 3a), which is equivalent to
requiring the same threshold proportion of coherent
signal elements across the whole stimulus. For the
blank check stimuli (Figure 3b), the predicted threshold
elevation is a factor of

ffiffiffi
2
p

as there are no interstitial
noise elements to limit performance in that condition.
These predictions capture the performance for the
small check sizes (1 to 3) in the noise check condition,
the medium check sizes (5 to 9) in the blank check
condition, and the largest /¼ 2708 size (15) in both the
noise check and blank check conditions (see Figure 3a
and b). The predictions fail, however, to describe the
general form of either set of results, which both feature
a transition from greater to lesser summation as the
check size increases.

The ‘‘sum ideally’’ (SI) strategy involves the combi-
nation of orientation information only from potential
signal elements. This is equivalent to weighting the
elements according to their expected signal-to-noise
ratio as the responses to the elements in the noise
regions provide zero signal. Models with this strategy
predict threshold elevation of a factor of approximatelyffiffiffi

2
p

for both of the checked conditions (Figure 3c and
d), which is identical to the prediction for the blank
check stimuli with the SA model. For this reason, the
results in the blank check condition, which were well
described by SA models, are fit just as well by the SI
models. In addition, the SI models predict the

ffiffiffi
2
p

summation for the medium check sizes in the noise
check condition. However, this model also fails to
capture the general form of the human data for either
stimulus type.

Two-stage hybrid models

The fact that the simpler candidate models featuring
the two different pooling strategies (SA and SI) each
predicted performance for different subsets of the
results suggested that a more complete account could
be provided by a model that combined their two
behaviors. In the ‘‘two-stage (TS) hybrid models,’’
mandatory local combination over a k · k region
(behaving like the SA model) is followed by flexible
pooling of the outputs from those regions weighted by
their expected signal-to-noise ratios, which were
applied as a template (as in the SI model). The size of
the local pooling region (k) was the only fitted
parameter in this model. The best fit to the noise check

data was provided by a k of 3 although the fit provided
by a k of 2 was only marginally worse (see Appendix B,
Figure A2). In the noise check condition, this model
predicts an initial doubling of the coherence threshold
for the small check sizes, followed by an improvement
in performance to approach a factor of

ffiffiffi
2
p

for the
medium and large check sizes (see Figure 3e). This
captures the performance for all but the largest (15)
check sizes. In the blank check condition (Figure 3f),
the predictions are once again the same as for models
with the SA and SI strategies.

Internal noise

The SA, SI, and TS models all make predictions that
are identical to each other for the blank check
condition. This is because there are no interstitial noise
elements in that condition that can be inappropriately
pooled to elevate the coherence threshold. The results,
however, show a doubling of threshold for the small
check sizes that is the same in the noise check and blank
check conditions. This is a larger performance deficit
than can be accounted for by any of the three models
(which all predict a

ffiffiffi
2
p

threshold increase for the blank
check condition). A two-stage hybrid model, featuring
additive Gaussian internal noise at each location (TN),
does, however, predict similar performance for the
blank check conditions as for the noise check condi-
tions (see Figure 4a and b). The internal noise in the
model is added after the rectification stage (meaning
that the noisy local outputs can be negative). Because
of the mandatory combination rule at the first pooling
stage, this early noise model is equivalent to a model in
which performance is limited by noise affecting the
output of the first pooling stage.

The standard deviation of the internal noise (rint) is
now an additional parameter in the model. It is
expressed as a percentage of the summed element-wise
filter response to a matched log-Gabor element (i.e.,
relative to the maximum local filter output). As rint is
increased from zero, it initially has the effect of
increasing thresholds for the 1 · 1 blank check
condition to bring them in line with those from the
noise check condition. Once these have become
equivalent, higher values of rint serve mainly to increase
or decrease the sensitivity for all conditions. Calculat-
ing the relative coherence thresholds from the output of
the model therefore largely factors out the effects of
this model parameter once rint is sufficiently high (see
Appendix B). Figure 4a and b shows the TN model
prediction with the best-fitting k and rint values for the
blank check data (note that the best-fitting k for the
blank check data is 2, whereas k¼ 3 provided a
marginally better fit to the noise check data as shown in
Figure A2). For both the noise check and the blank
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check conditions, the TN model predicts an initial
twofold summation for the 1 · 1 check size, which then
decreases to approximately

ffiffiffi
2
p

as the check size
increases. The predictions from this model account for
the average human thresholds in the noise check
condition for all but the largest check size (Figure 4a).
In the blank check condition (Figure 4b) thresholds are
lower than those predicted by the model for the
medium (9) and largest (15) /¼ 908 condition, but for
all other conditions, the human behavior is captured by
the model.

Maximum integration aperture

In the TN model, there are several reasons why
coherence thresholds could be elevated when signal is
presented only in the periphery (compare / ¼ 908 and
2708 thresholds for the largest check size stimulus in
Figure 4). The simplest would be if the observer were
only able to pool information from elements in the
center of the display. This was tested using a ‘‘two-stage
hybrid model with internal noise and maximum
integration aperture’’ (TA), in which the model
observer only had access to information from elements
that were within a central a · a element square
aperture (equivalent to a degrees or 4a carrier cycles).
This would also be equivalent to a model that featured
a step-edge decline in sensitivity at this eccentricity.
More complex accounts of the effect of visual field
eccentricity are not explored here as our stimuli were
designed to factor out these effects when possible,
meaning that any explanation we might provide would
not be well constrained by our data. For example,
further summation may be achieved by probability
summation between multiple integration apertures at
different locations across the visual field (resulting in a
model similar to that proposed for the area summation
of contrast by Baker & Meese, 2011).

In order to show which features of our results the TA
model could and could not account for, two separate
fits were performed to determine the optimal set of
parameters for the noise check (TA1) and the blank
check (TA2) data. The TA1 prediction is shown in
Figure 4c and d. The best-fitting integration aperture
size was 18 · 18 degrees (compared to other square
apertures with integer dimensions, see Appendix B).
The TA1 model prediction is similar to that made by
the TN model (for the same kernel size, see Appendix
B) for all conditions except for the largest check size
(15). For the 15 · 15 check stimuli, the predicted
thresholds for the / ¼ 908 stimulus are reduced (when
expressed relative to the full condition threshold), and
the thresholds for the / ¼ 2708 stimulus are elevated.
This model prediction provides a good fit to the noise
check data (RMSe¼ 0.54 dB) and for the smaller check

sizes (1–3) in the blank check condition. For the larger
check sizes in the blank check condition, however, the
TA1 model prediction systematically underestimates
the sensitivity of the human observers (resulting in a
relatively large RMSe of 1.78 dB).

Fitting the aperture model to the blank check
condition produces the TA2 prediction shown in Figure
4e and f. As in the TN model, the best-fitting k for the
blank check condition was 2 (as opposed to the value
found from the TA1 fit to the noise check data, which
favored a k of 3). The best-fitting aperture size (a) was
19 · 19 degrees (18 wider than the size found by fitting
to the noise check data). As would be expected, this
version of the model provides an inferior fit to the noise
check data compared to the TA1 prediction (1.16 dB vs.
0.54 dB), underestimating both the threshold for the 3
· 3 check condition and the amount of separation
between the two modulator phases at the largest check
size. In the blank check condition, although the quality
of the fit is improved from the TA1 prediction (1.12 vs.
1.78 dB), sensitivity is still underestimated for the larger
(9–15) check sizes. This indicates that there is no
combination of parameters for this model architecture
that can capture the performance for those conditions.

Residual effects of check condition and
modulator phase

Figure 5 replots the data from Figure 2c and d,
showing directly the threshold elevation effect that the
interstitial noise elements in the noise check condition
have. Also shown in Figure 5 are the threshold
elevation predictions from each of the six model
variants presented earlier. All models except SA and TS
predict no threshold elevation from the noise checks in
either modulator phase. For the / ¼ 908 modulator
phase the data agree with this prediction, with the ratio
between the noise check and blank check thresholds
remaining close to one for all check sizes. For the /¼
2708 modulator phase, there is no threshold elevation
introduced by the noise checks at the smallest (1) check
size, but as the check size increases, the noise checks
have the effect of raising thresholds relative to the
blank check condition up to a maximum factor of

ffiffiffi
2
p

for the largest (15) check size. Only the SA and TS
models have their performance limited by the intersti-
tial randomly oriented elements in the noise check
stimuli and therefore predict threshold elevation in the
noise check condition. The pattern of elevation
predicted, however, does not match that seen in the /¼
2708 data. The key difference is that the data show a
threshold elevation effect that both increases with
check size and is dependent on the modulator phase
whereas none of the models investigated here make this
prediction. One possible explanation for this effect
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would be an increase in the size of the mandatory local
integration region with eccentricity (linking this to the
explanation of crowding provided by Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001).

Discussion

Orientation integration is a noisy two-stage
process

The results of this study suggest that the combina-
tion of orientation information over space is a noisy
two-stage process (Figure 6). The key results reported
here can be accounted for by a model that performs
mandatory local integration affected by internal noise
at each location followed by flexible pooling over the
outputs from those regions (for the vector-averaging
version of the model, these would seem equivalent to
the involuntary and voluntary averaging discussed by
Dakin, Bex, Cass, & Watt, 2009). This account is in
agreement with previous studies that have found lower
thresholds for stimuli with a greater signal area (Dakin,
2001; Jones et al., 2003). The effect found for the
arrangement of the elements in the display contradicts
the flexibility attributed to the pooling of local samples
by Dakin (2001) although it is possible that the
differences in terms of the task set to the observer
(signal in noise here vs. fine discrimination in Dakin)
would mean that they did not investigate the same
signal-combination process (as discussed in the Intro-
duction to this paper). The close spacing of the
elements in our stimuli and their extension into the
periphery would lead us to expect the individual
elements to be crowded by each other. Under the
account provided by Dakin et al. (2009), it is suggested
that crowding only limits performance in tasks in which
there is little orientation variability (e.g., a fine
discrimination task) whereas for a signal-in-noise task,
such as ours, performance should be limited by the
number of pooled samples. If crowding were a limit on
attentional resolution (Strasburger, 2005), however,
then we would expect it to affect the ability of our
observers to segregate potential signal and noise
elements, possibly explaining the elevated thresholds in
the /¼2708 noise check condition. In addition, it is not
possible from our study to determine whether the
observers were pooling all of the available samples in
the stimulus or if they were making their decisions
based on a subset of the local samples in the display (as
was found by Dakin, 2001).

It is not entirely clear how the results presented here
can be reconciled with those of Husk et al. (2012), who
found no summation with increasing signal area for
similar stimuli. The main difference between the stimuli

used in the two studies is that this study used the
Battenberg summation paradigm whereas Husk et al.
increased the signal area of their stimuli by increasing
diameter. It is possible that a combination of decreas-
ing sensitivity for the local orientation-discrimination
task and increasing the mandatory summation region
size with eccentricity might flatten the threshold versus
area functions. This question shall be addressed in
future work, which will combine the Battenberg
stimulus paradigm used here with a conventional area-
summation design, comparing stimuli of different
diameters. Performing this experiment at a variety of
spatial frequencies will also allow us to determine
whether the size of the mandatory integration region is
linked to the scale of the elements that are being
pooled. Previous studies that have investigated the
processing of visual texture would lead us to predict
this to be the case (Kingdom, Keeble, & Moulden,
1995; Kingdom & Keeble, 1999); however, if the
mandatory pooling were related to crowding, we would
expect its extent to be independent of the scale of the
stimulus (Levi, Hariharan, & Klein, 2002).

It is noteworthy that the results presented in Figure
2c and d bear a resemblance to those found in the
contrast Battenberg study by Meese (2010) with short-
range linear summation followed by long-range square-
law summation. The explanation for the square-law
summation differs, however, between the two studies.
For the orientation result presented here, this nonlinear
summation is explained by a flexible pooling strategy
that segregates out the input from the nonsignal regions
of the display whereas, in the contrast study by Meese,
the output from those regions was included with that
from the signal regions in the global combination
process, and the nonlinear summation was accounted
for by a square-law transducer.

The nature of the limiting internal noise

Figure 6 shows three possible locations for the
limiting noise in the modeling for this study (Nearly,
Nmid, or Nlate). The similarity of the results from the
noise check and blank check conditions indicate that
the limiting noise is not driven by the response to
individual elements. Instead, they suggest that a level of
internal noise is pooled that is proportional to the
number of locations being monitored, which includes
blank locations that are being integrated at the first
stage of the model. Jones et al. (2003) included ‘‘late
noise’’ when modeling data from an orientation
coherence experiment that used filtered noise as stimuli.
In the modeling for that study, the noise was constant
for different signal areas (this would be Nlate in Figure
6). A model based on dominant noise at Nlate would
make the same prediction as the SA model shown in
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Figure 3a for both the noise check and blank check
conditions. Such a model would not explain the results
presented here as the improvement in performance seen
for the medium check size stimuli requires that the
observer is able to segregate out the limiting noise in
irrelevant regions from the second combination stage.
If dominant noise is contributed from each monitored

location, then this could be performed by weighting the
local outputs according to a template w as shown in
Figure 6.

In the internal noise model developed in this study
(see Figure 4), the noise was implemented at each
pooled location after the initial filtering stage (Nearly);
however, due to the mandatory local combination at

Figure 6. Diagram of the TN model. This diagram shows how the ‘‘vertical’’ response to an example stimulus (which includes blank

spaces in stimulus region n) is determined by filtering with a vertical filter element, mandatory local summation, and then global

summation of the local outputs (from stimulus regions 1 to n) weighted by the expected signal-to-noise ratio at each location (w). For

ease of presentation, the local summation region shown is 1 · 4 elements (our results suggest 3 · 3), and only the responses to the

first and last stimulus regions are presented. The ‘‘horizontal’’ response would be calculated in an identical manner except with a

horizontal filter element at the convolution stage. Nearly, Nmid, and Nlate show three possible locations for the limiting internal noise.
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the first combination stage, this is equivalent to adding
noise to the combined local outputs (Nmid). From the
results of this study, it is not possible to determine
whether the limiting noise should be Nearly or Nmid in
Figure 6; however, Nmid seems more plausible as the
level of early noise needed to exceed the external noise
introduced by the randomly oriented elements in the
noise check stimuli would be very high. In the best-
fitting prediction to the noise check data (TA1), the
standard deviation of the early noise would be 85% of
the mean response of the local detector to its ideal
stimulus; in the best-fitting prediction to the blank
check data (TA2) prediction, it would be even higher
(147%). There is also the possibility that the limiting
internal noise could be multiplicative rather than the
additive noise implemented in the modeling here. We
shall address this question through the use of an
equivalent noise paradigm in future work.

Keywords: orientation, summation, integration, tex-
ture perception, computational modeling
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Appendix A: Identification task bias
distributions

Figure A1 shows the distribution of the response
biases found in the analysis of the data from the
identification task. Across all observers and conditions,
the mean bias was�4.66% with a standard deviation of
7.49%. This means that, on average, the observers were
as likely to respond ‘‘horizontal’’ as they were to
respond ‘‘vertical’’ to a stimulus with 4.66% vertical
coherence. Looking at the data from the two main
conditions (noise check and blank check) for each
observer individually, most observers showed a signif-
icant response bias as decided by a one-sample t test
(Table A1). For all observers except one, the direction
of any significant bias was consistent across the two
conditions. For ASB, the bias changed direction
between the noise check and blank check condition,
possibly due to this observer being tested on these
conditions in two different labs several weeks apart.
Aside from ASB, the observers tested in each lab
showed the same mixture of biases: from horizontal
(LFE and RJS) through mostly unbiased (SAW and
VRP) to vertical (DHB and JSH).

Appendix B: Determination of
parameter values

Predictions were generated from the TS model with a
range of different kernel sizes (k) for the local

Figure A1. Distributions of response biases from each observer calculated as the level at which the fitted psychometric functions were

at 50%. Bias values were pooled across all repetitions in all of the subconditions tested in each of the two main conditions: noise

check versus blank check (shown in red and blue, respectively). Statistical properties of the distributions are reported in Table A1.
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mandatory integration stage (1 · 1 to 7 · 7 in integer
steps). The model curves produced for the noise check
condition and the RMS errors between those curves
and the data are shown in Figure A2a and b. For the
blank check condition, the model curves were identical
for any kernel size, producing the same predictions as
the SA and SI models. The best-fitting value for the k
parameter is 3. Smaller k values predict too little
summation for the small check sizes whereas larger k
values predict too much summation for the larger check
sizes.

The predicted blank check condition thresholds
generated by the TN model for a kernel size of 2 and a
range of different internal noise levels (rint) are shown
in Figure A3. Predictions with a kernel size of 3 are
shown in Figure A4. As the internal noise level
increases, the prediction for the blank check condition
becomes similar to that for the noise check condition.
In conditions of high internal noise, the blank check
data are best fit by a kernel size (k) of 2.

Contour plots of the RMS error between the noise
check data and predictions from the TA model are

Observer Condition Mean SD df t p Sig.

ASB Noise check 5.52% 3.63% 47 10.54 ,0.001 **

Blank check �12.77% 7.60% 47 �11.64 ,0.001 **

DHB Noise check 1.54% 4.84% 47 2.20 0.033 *

Blank check 3.29% 4.59% 47 4.96 ,0.001 **

JSH Noise check 6.32% 4.15% 47 10.54 ,0.001 **

Blank check 5.89% 6.55% 47 6.23 ,0.001 **

LFE Noise check �8.71% 4.72% 47 �12.77 ,0.001 **

Blank check �12.77% 7.60% 47 �2.53 0.015 *

RJS Noise check �3.90% 8.56% 47 �3.15 0.003 *

Blank check �5.42% 6.24% 47 �6.01 ,0.001 **

SAW Noise check �1.96% 6.08% 47 �2.24 0.030 *

Blank check 0.02% 5.49% 47 0.03 0.976

VRP Noise check 0.97% 7.88% 47 0.85 0.398

Blank check �0.16% 6.19% 47 �0.18 0.859

Table A1. Statistical properties of the bias distributions for each observer and major condition (noise check vs. blank check). Notes: A
one-sample t test was performed for each in order to determine whether any bias present was significant.

Figure A2. Panel (a) shows model predictions for the two-stage hybrid model with a range of different kernel sizes (k) against the data

from the noise check condition (replotted from Figure 2c). Panel (b) shows the RMS error between the model predictions and the

data for each value of k.
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Figure A3. Panel (a) shows model predictions for the noisy two-stage hybrid model with a kernel size (k) of 2 and a range of different

internal noise levels (rint) against the data from the blank check condition (replotted from Figure 2d). Panel (b) shows the RMS error

between the model predictions and the data for each value of rint.

Figure A4. Panel (a) shows model predictions for the noisy two-stage hybrid model with a kernel size (k) of 3 and a range of different

internal noise levels (rint) against the data from the blank check condition (replotted from Figure 2d). Panel (b) shows the RMS error

between the model predictions and the data for each value of rint.
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Figure A5. RMS error between the predictions from the TA model and the data for different combinations of the kernel size (k),

internal noise (rint), and aperture size (a) parameters. The minimum on each plot is indicated by a ‘‘þ.’’ The minimum across the two

graphs (RMSe ¼ 0.54 dB when k ¼ 3, rint ¼ 352, and a ¼ 18) is the TA1 model prediction shown in Figure 4c.

Figure A6. RMS error between the predictions from the TA model and the data for different combinations of the kernel size (k),

internal noise (rint), and aperture size (a) parameters. The minimum on each plot is indicated by a ‘‘þ.’’ The minimum across the two

graphs (RMSe ¼ 1.12 dB when k ¼ 2, rint ¼ 608, and a ¼ 19) is the TA2 model prediction shown in Figure 4f.
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shown in Figure A5. The parameters that produce the
global minimum across the two surfaces are used to
generate the TA1 prediction shown in Figure 4c and d.
The RMS errors between the blank check data and
predictions from the TA model are shown in Figure
A6. The parameters that produce the global minimum
from these fits are used to generate the TA2 prediction
shown in Figure 4e and f.

Appendix C: Vector-averaging
model

In the vector-averaging model (Dakin & Watt,
1997), each pooled element is represented as a vector
with magnitude mi and orientation hi. It is assumed that
the observer is able to extract the orientation of each
element (in the model, this is implemented by taking the
orientations directly from the stimulus-generation
procedure). These are then combined using vector-
averaging to get the average orientation

havg ¼
1

2
tan�1

X
x;y

mx;ysin 2hx;y

X
x;y

mx;ycos 2hx;y

0
BB@

1
CCA: ð2Þ

Note that the local orientations are doubled before
averaging and that the output of the vector-averaging
operation is halved. This wraps the orientations at 1808
(rather than at 3608, which is the usual limit) because
each element in the display is symmetrical across its
major and minor axes (a 908 element is identical to a
2708 element).

When every element is weighted equally, all elements
are represented by unit vectors (mx,y ¼ 1). In cases in
which the elements have different expected signal-to-
noise ratios (e.g., the second stage of the two-stage
hybrid model below), the magnitudes of the local
vectors are each weighted by a template to control the
contribution each local vector makes to the calculated
average (see the section on pooling strategies). The
model then picks the potential target orientation closest
to the calculated average orientation. The predictions
from vector-averaging models using the different
pooling strategies given are shown in Figure A7a
through d. These predictions have the same form as
those made by the filter-maxing combination process in
Figure 3.

For the hybrid model, the convolution kernel to
simulate mandatory local combination is applied to the
vector components

K ¼
1
..
.

k
ð

1 � � � k
1 � � � 1
..
. . .

.
1

1 1 1
Þ; ð3Þ

Asin x; y½ � ¼ mx;ysin hx;y: ð4Þ

Acos x; y½ � ¼ mx;ycos hx;y: ð5Þ

Tsin ¼ Asin*K; ð6Þ

Tcos ¼ Acos*K: ð7Þ

These ‘‘blurred’’ components are then combined
through vector-averaging.

havg ¼
1

2
tan�1

X
x;y

Tsin

X
x;y

Tcos

0
BB@

1
CCA: ð8Þ

Predictions from this vector-averaging hybrid model
are shown in Figure A7e and f. The kernel size (k) was
chosen to be the same as that used in the filter-maxing
model. A comparison between the predictions made by
the vector-averaging two-stage hybrid model and the
equivalent filter-maxing combination model (Figure 3e
and f) shows them to be very similar.

The internal noise model adds a sample of zero-mean
(l ¼ 0) Gaussian noise to each element, drawn from a
distribution with the requested standard deviation (rint)

N x; y½ � ¼ Nðl; rintÞ; ð9Þ

havg ¼
1

2
tan�1

X
x;y

Tsin þ N1

X
x;y

Tcos þ N2

0
BB@

1
CCA: ð10Þ

Predictions from this model and the version of the
model with a maximum integration aperture are shown
in Figure A8. In each case, the parameters were set to
be the same as those used in the filter-maxing models
(Figure 4) except for the internal noise parameter (rint),
which was set to a value that produced a prediction that
was close to the one from the equivalent filter-maxing
model (determined by fitting the vector-averaging
model to the filter-maxing model and choosing the
value of rint that gave the lowest RMS error). In all
cases, the vector-averaging model was able to produce
similar behavior to that seen in the filter-maxing model.
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Figure A7. Coherence thresholds plotted with predictions from the vector-averaging versions of the SA (a–b), SI (c–d), and HM (e–f)

models. Each row shows the same averaged data replotted from Figure 2c and d with the threshold for each check condition

expressed as a multiple of that for the full stimulus.
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Figure A8. Coherence thresholds plotted with predictions from the vector-averaging version of the TN model and from the vector-

averaging version of the TA model with the best-fitting aperture and kernel size parameters from the filter-maxing model fits to the

noise check (c–d) and blank check (e–f) data.
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