75 research outputs found

    Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection

    Get PDF
    Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the β-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin β-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain

    Complementarities between Barriers to Innovation: Data Evidence from Poland

    Full text link
    This paper investigates the barriers to innovation perceived by Polish manufacturing firms. It refers to the heterogeneity of innovation active firms. We introduce a taxonomy of innovative firms based on the frequency with which they introduce commercialised innovations using data from both CIS4 (for 2002-2004) and CIS5 (2004-2006). Two groups of innovation-active firms are distinguished: those which introduced innovation in both periods covered by both CIS (which we call persistent innovators) and those which introduced innovation either in CIS4 or CIS5 (which we call occasional innovators). We use a four step analysis covering binary correlations, Principal Component Analysis, probit model and correlations of disturbances. Two types of explanatory variables describing firms' characteristics and innovation inputs used are considered. The paper shows that there are considerable differences in sensitivities to the perception of innovation barriers and in complementarities among barriers between persistent and occasional innovators. In the case of occasional innovators, a kind of innovation barrier chain is observed. This has an impact on differences in the frequency of innovation activities between the two groups of innovators and results in a diversification of innovators

    A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus

    Get PDF
    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species

    Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH

    Get PDF
    Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 5′ end of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only the 3′UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells, we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions

    The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

    Get PDF
    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues

    Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays

    Get PDF
    Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events

    The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

    Get PDF
    Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs

    Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice

    Full text link
    Efficient and cost-effective conversion of plant biomass to usable forms of energy requires a thorough understanding of cell wall biosynthesis, modification and degradation. To elucidate these processes, we assessed the expression dynamics during enzymatic removal and regeneration of rice cell walls in suspension cells over time. In total, 928 genes exhibited significant up-regulation during cell wall removal, whereas, 79 genes were up-regulated during cell wall regeneration. Both gene sets are enriched for kinases, transcription factors and genes predicted to be involved in cell wall-related functions. Integration of the gene expression datasets with a catalog of known and/or predicted biochemical pathways from rice, revealed metabolic and hormonal pathways involved in cell wall degradation and regeneration. Rice lines carrying Tos17 mutations in genes up-regulated during cell wall removal exhibit dwarf phenotypes. Many of the genes up-regulated during cell wall development are also up-regulated in response to infection and environmental perturbations indicating a coordinated response to diverse types of stress

    Looking back and looking forward

    No full text
    corecore