119 research outputs found

    Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate

    Get PDF
    We use a coupled climate model to evaluate ocean bottom pressure changes in the IPCC-A1B climate scenario. Ocean warming in the 21st and 22nd centuries causes secular oceanic bottom pressure anomalies. The essential feature is a net mass transfer onto shallow shelf areas from the deeper ocean areas, which exhibit negative bottom pressure anomalies. We develop a simple mass redistribution model that explains this mechanism. Regionally, however, distinct patterns of bottom pressure anomalies emerge due to spatially inhomogeneous warming and ocean circulation changes. Most prominently, the Arctic Ocean shelves experience an above-average bottom pressure increase. We find a net transfer of mass from the Southern to the Northern Hemisphere, and a net movement of mass closer towards Earth's axis of rotation. Thus, ocean warming and the ensuing mass redistribution change the length-of-day by -0.12 ms within 200 years, demonstrating that the oceans are capable of exciting nontidal length-of-day changes on decadal and longer timescales

    Regional dynamic and steric sea level change in response to the IPCC-A 1B scenario

    No full text
    This paper analyzes regional sea level changes in a climate change simulation using the Max Planck Institute for Meteorology (MPI) coupled atmosphere–ocean general circulation model ECHAM5/MPI-OM. The climate change scenario builds on observed atmospheric greenhouse gas (GHG) concentrations from 1860 to 2000, followed by the International Panel on Climate Change (IPCC) A1B climate change scenario until 2100; from 2100 to 2199, GHG concentrations are fixed at the 2100 level. As compared with the unperturbed control climate, global sea level rises 0.26 m by 2100, and 0.56 m by 2199 through steric expansion; eustatic changes are not included in this simulation. The model’s sea level evolves substantially differently among ocean basins. Sea level rise is strongest in the Arctic Ocean, from enhanced freshwater input from precipitation and continental runoff, and weakest in the Southern Ocean, because of compensation of steric changes through dynamic sea surface height (SSH) adjustments. In the North Atlantic Ocean (NA), a complex tripole SSH pattern across the subtropical to subpolar gyre front evolves, which is consistent with a northward shift of the NA current. On interannual to decadal time scales, the SSH difference between Bermuda and the Labrador Sea correlates highly with the combined baroclinic gyre transport in the NA but only weakly with the meridional overturning circulation (MOC) and, thus, does not allow for estimates of the MOC on these time scales. Bottom pressure increases over shelf areas by up to 0.45 m (water column equivalent) and decreases over the Atlantic section in the Southern Ocean by up to 0.20 m. The separate evaluation of thermosteric and halosteric sea level changes shows that thermosteric anomalies are positive over most of the World Ocean. Because of increased atmospheric moisture transport from low to high latitudes, halosteric anomalies are negative in the subtropical NA and partly compensate thermosteric anomalies, but are positive in the Arctic Ocean and add to thermosteric anomalies. The vertical distribution of thermosteric and halosteric anomalies is highly nonuniform among ocean basins, reaching deeper than 3000 m in the Southern Ocean, down to 2200 m in the North Atlantic, and only to depths of 500 m in the Pacific Ocean by the end of the twenty-first century

    Are Long Tide Gauge Records in the Wrong Place to Measure Global Mean Sea Level Rise?

    Get PDF
    Ocean dynamics, land motion, and changes in Earth\u27s gravitational and rotational fields cause local sea level change to deviate from the rate of global mean sea level rise. Here we use observations and simulations of spatial structure in sea level change to estimate the likelihood that these processes cause sea level trends in the longest and highest-quality tide gauge records to be systematically biased relative to the true global mean rate. The analyzed records have an average twentieth century rate of approximately 1.6 mm/yr, but based on the locations of these gauges, we show that the simple average underestimates the twentieth century global mean rate by 0.1 ± 0.2 mm/yr. Given the distribution of potential sampling biases, we find tha

    Monitoring Atlantic overturning circulation and transport variability with GRACE-type ocean bottom pressure observations – a sensitivity study

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is a key mechanism for large-scale northward heat transport and thus plays an important role for global climate. Relatively warm water is transported northward in the upper layers of the North Atlantic Ocean and, after cooling at subpolar latitudes, sinks down and is transported back south in the deeper limb of the AMOC. The utility of in situ ocean bottom pressure (OBP) observations to infer AMOC changes at single latitudes has been characterized in the recent literature using output from ocean models. We extend the analysis and examine the utility of space-based observations of time-variable gravity and the inversion for ocean bottom pressure to monitor AMOC changes and variability between 20 and 60° N. Consistent with previous results, we find a strong correlation between the AMOC signal and OBP variations, mainly along the western slope of the Atlantic Basin. We then use synthetic OBP data – smoothed and filtered to resemble the resolution of the GRACE (Gravity Recovery and Climate Experiment) gravity mission, but without errors – and reconstruct geostrophic AMOC transport. Due to the coarse resolution of GRACE-like OBP fields, we find that leakage of signal across the step slopes of the ocean basin is a significant challenge at certain latitudes. Transport signal rms is of a similar order of magnitude as error rms for the reconstructed time series. However, the interannual AMOC anomaly time series can be recovered from 20 years of monthly GRACE-like OBP fields with errors less than 1 sverdrup in many locations

    GPS displacement dataset for the study of elastic surface mass variations

    Get PDF
    Quantification of uncertainty in surface mass change signals derived from Global Positioning System (GPS) measurements poses challenges, especially when dealing with large datasets with continental or global coverage. We present a new GPS station displacement dataset that reflects surface mass load signals and their uncertainties. We assess the structure and quantify the uncertainty of vertical land displacement derived from 3045 GPS stations distributed across the continental US. Monthly means of daily positions are available for 15 years. We list the required corrections to isolate surface mass signals in GPS estimates and screen the data using GRACE(-FO) as external validation. Evaluation of GPS time series is a critical step, which identifies (a) corrections that were missed, (b) sites that contain non-elastic signals (e.g., close to aquifers), and (c) sites affected by background modeling errors (e.g., errors in the glacial isostatic model). Finally, we quantify uncertainty of GPS vertical displacement estimates through stochastic modeling and quantification of spatially correlated errors. Our aim is to assign weights to GPS estimates of vertical displacements, which will be used in a joint solution with GRACE(-FO). We prescribe white, colored, and spatially correlated noise. To quantify spatially correlated noise, we build on the common mode imaging approach by adding a geophysical constraint (i.e., surface hydrology) to derive an error estimate for the surface mass signal. We study the uncertainty of the GPS displacement time series and find an average noise level between 2 and 3 mm when white noise, flicker noise, and the root mean square (rms) of residuals about a seasonality and trend fit are used to describe uncertainty. Prescribing random walk noise increases the error level such that half of the stations have noise &gt; 4 mm, which is systematic with the noise level derived through modeling of spatially correlated noise. The new dataset is available at https://doi.org/10.5281/zenodo.8184285 (Peidou et al., 2023) and is suitable for use in a future joint solution with GRACE(-FO)-like observations.</p

    Driven Assembly of Lignin into Microcapsules for Storage and Delivery of Hydrophobic Molecules

    Get PDF
    Oil-filled microcapsules of kraft lignin were synthe- sized by first creating an oil in water emulsion followed by a high- intensity, ultrasound-assisted cross-linking of lignin at the water/oil interface. The rationale behind our approach is based on promoting documented lignin hydrophobic interactions within the oil phase, followed by locking the resulting spherical microsystems by covalent cross-linking using a high intensity ultrasound treatment. As further evidence in support of our rationale, confocal and optical microscopies demonstrated the uniformly spherical morphology of the created lignin microparticles. The detailed elucidation of the cross-linking processes was carried out using gel permeation chromatography (GPC) and quantitative 31P NMR analyses. The ability of lignin microcapsules to incorporate and release Coumarin-6 was evaluated in detail. In vitro studies and confocal laser scanning microscopy analysis were carried out to assess the internalization of capsules into Chinese hamster ovary (CHO) cells. This part of our work demonstrated that the lignin microcapsules are not cytotoxic and readily incorporated in the CHO cells

    Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise

    Get PDF
    Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes

    Highly efficient polymer solar cells cast from non-halogenated xylene/anisaldehyde solution

    Get PDF
    Several high performance polymer:fullerene bulk-heterojunction photo-active layers, deposited from the non-halogenated solvents o-xylene or anisole in combination with the eco-compatible additive p-anisaldehyde, are investigated. The respective solar cells yield excellent power conversion efficiencies up to 9.5%, outperforming reference devices deposited from the commonly used halogenated chlorobenzene/1,8-diiodooctane solvent/additive combination. The impact of the processing solvent on the bulk-heterojunction properties is exemplified on solar cells comprising benzodithiophene-thienothiophene co-polymers and functionalized fullerenes (PTB7:PC71BM). The additive p-anisaldehyde improves film formation, enhances polymer order, reduces fullerene agglomeration and shows high volatility, thereby positively affecting layer deposition, improving charge carrier extraction and reducing drying time, the latter being crucial for future large area roll-to-roll device fabrication. © The Royal Society of Chemistry 2015

    Correction to: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global

    Get PDF
    In the author group at the start of the article and in the affiliations section at the end of the article, the sixth author’s name was incorrectly spelled as “Ichiro Fukimori”. However, the correct name should read as “Ichiro Fukumori”
    corecore