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Observation-Driven Estimation of the Spatial Variability of 20"
Century Sea Level Rise

B. D. Hamlington® (), A. Burgos’, P. R. Thompson2 i, F. W. Landerer3 ', C. G. Piecuch? (2,

S. Adhikari3 ), L. Caron3 ', J. T. Reager3 (', and E. R. lvins3

1Depar‘cment of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA, 2Departmen‘f of
Oceanography, University of Hawai'i at Manoa, Honolulu, HI, USA, 3)et Propulsion Laboratory, California Institute of
Technology, CA, USA, 4Atmospheric and Environmental Research, Inc, Lexington, MA, USA

Abstract Over the past two decades, sea level measurements made by satellites have given clear indica-
tions of both global and regional sea level rise. Numerous studies have sought to leverage the modern
satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise,
leading to several estimates for the 20™ century trend in global mean sea level in the range between 1 and
2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period.
This is due largely to the inhomogeneity and quality of the tide gauge network through the 20" century,
which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted,
integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical
sea level forcing information from the major contributing processes over the past century. The resulting
map of 20" century regional sea level rise is optimized to agree with the tide gauge-measured trends, and
provides an indication of the likely contributions of different sources to regional patterns. Of equal
importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and
uncertainty of the contributing processes.

1. Introduction

At many locations across the globe, planning efforts for impending sea level rise are already underway. While
assessments of the global rate of sea level change provide an important indicator of the changing climate, the
salient information for planning efforts is how sea level varies regionally. Over the past two decades, sea level
has been measured continuously and with near-global coverage by satellite altimeters, leading to clear indica-
tions of both global and regional sea level rise (Church et al,, 2013). Unfortunately, it is a challenge to extract
useful information regarding long-term sea level changes over the past century using altimeter-measured
rates, as they are heavily influenced by interannual- to decadal-scale variability (e.g., Boening et al., 2012; Caze-
nave et al,, 2012; Fasullo et al., 2013; Hamlington et al.,, 2016a). On global scales, numerous efforts have been
made to leverage the modern satellite record and available historic sea level data provided by tide gauges to
estimate past sea level rise, leading to estimates of the 20th century trend in global mean sea level (GMSL)
ranging from 1.1 mm/yr to 1.9 mm/yr (Church & White, 2006, 2011; Church et al. 2004; Dangendorf et al.,
2017; Jevrejeva et al,, 2014; Hay et al., 2015; Ray & Douglas, 2011; Thompson et al., 2016). On regional scales,
there have been fewer attempts to constrain trends over the same time period, reflecting the challenges pre-
sented by the available measurements of past sea level (Hay et al,, 2017; Wenzel & Schroter, 2014).

Since the beginning of the 19" century, tide gauges have provided measurements of relative sea level rise at
specific locations across the globe. While generally providing long records, their usefulness is limited for a vari-
ety of reasons. Perhaps most problematic is the inconsistency of sampling both in space and time. There is a
strong hemispheric bias, with the majority of gauges located around heavily populated areas in the northern
hemisphere. The record length of the tide gauges varies dramatically, with only a relatively small subset provid-
ing measurements for the majority of the 20t century. Even when the records are long, gaps in the records on
the order of several years often exist. In terms of the measurements they provide, tide gauges also measure rela-
tive sea level rise, specifically vertical displacement of the sea surface relative to the land upon which the tide
gauge is located. This presents a confounding issue because for many tide gauges, it is difficult or impossible to
fully correct for vertical land motion. Typically, relative sea level trends associated with glacial isostatic
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adjustment (GIA) are modeled and subsequently removed from the tide gauge records (e.g., Church & White,
2006; 2011 Church et al., 2004; Ray & Douglas, 2011; Thompson et al.,, 2016). Predictions of existing GIA models,
however, differ significantly, which can impact trends estimated from tide gauge data over long timescales.
Beyond GIA, there is potentially other vertical land motion signals that are non-stationary and highly uncertain
prior to the advent Global Positioning System (GPS) measurements over the last two decades. Recent studies
have corrected tide gauge records for vertical land motion using GPS measurements (Dangendorf et al., 2017;
Hamlington et al,, 2016a; Santamaria-Gémez et al, 2012; Woppelmann & Marcos, 2016), but many tide gauges
have no collocated GPS observation and questions remain regarding the applicability of a trend measured over
one or two decades to longer timescales to tide gauges in general.

To overcome the sampling challenges presented by the tide gauge network, a variety of methods have been
proposed in recent years to combine improved spatial information from modern data records and models
with the longer historic records (Church & White, 2006, 2011; Church et al. 2004; Dangendorf et al.,, 2017; Ham-
lington et al,, 2011; Hay et al,, 2015; Ray & Douglas, 2011; Thompson et al., 2016). Typically, these efforts have
focused on the reconstruction of GMSL back through time with few published attempts at reproducing the
spatial pattern of sea level trends during the majority of the 20" century. Even after producing a 20" century
regional trend map, there are questions regarding how to validate or “confirm” the resulting trend maps, as
the only available observations of sea level during the 20" century come from the tide gauges. The applied
techniques for reconstructing sea level are also often necessarily complex, making it difficult to assess sensitiv-
ities and understand the implications of assumptions that are made.

Here, we seek to simplify the process, building off the efforts of Thompson et al. (2016) to constrain the rate of
GMSL rise and extending the technique to estimate the spatial variability in 20" century sea level rise. As men-
tioned above, the main challenges in using tide gauges to estimate long-term regional trends are poor sampling
in space, inconsistent sampling in time, and unresolved vertical land motion that impacts the trend. First, through
careful tide gauge selection, we seek to reduce the impact of inconsistent sampling in time and unresolved verti-
cal land motion. We only select gauges with long and complete records during the 20" century (>70% com-
plete) and for which there is no documented evidence of significant non-GIA vertical land motion, leading to a
set of 15 gauges (list provided in supporting information Table ST and shown in figures). It should be noted that
although the editing criteria was intentionally strict and the small set of remaining gauges is not unexpected, the
results obtained here are potentially sensitive to this particular set of tide gauges. Without the ability to find
more gauges meeting this criteria, this paper is presented with the caveat that the results could differ given the
availability of more tide gauges. The mean linear trend of these 15 gauges is 1.69 mm/yr with a standard devia-
tion of 0.54 mm/yr. Next, after obtaining this set of tide gauges, we attempt to account for the dominant pro-
cesses that lead to spatial variability in these gauges on long timescales. In other words, we attempt to account
for and explain the sources that are contributing to the standard deviation of 0.54 mm/yr in these long-term sea
level trends. The methodological focus is on relative sea level trends that are estimated after removing the effect
of GIA, but this work does highlight the impact of the choice of GIA correction on the resulting global and
regional trends. Beyond GIA, we attempt to account for the dominant processes that could lead to the spatial
variability in these gauges on 100 year timescales, based on: 1) ocean dynamics, 2) the self-attraction/loading
(SAL) patterns of ice melt, 3) SAL of terrestrial groundwater depletion, and 4) SAL of water impoundment on
land. In Thompson et al. (2016), ice melt was accounted for using melt fingerprints generated using data from
the GRACE satellites, and ocean dynamics was accounted for using empirical orthogonal functions (EOFs) deter-
mined from the Coupled Model Intercomparison Project 5 (CMIP5) dynamic sea level trends. By generating ran-
dom combinations of these patterns that reduced the spread in trends of the 15 GlA-corrected tide gauges and
are consistent with published estimates of 20" century ice melt, it was shown that the true rate of GMSL rise in
the 20™ century is underestimated at the 15 tide gauge locations by 0.08 mm/yr. By modifying this procedure
and expanding it to account for more of the contributors to regional sea level rise, it is possible to generate 207
century trend maps under the same constraints and using the same assumptions as in Thompson et al. (2016).

2. Equation for Regional Sea Level Trends

To estimate the 20" century sea level trend (SLT) at each location across the globe, we consider the follow-
ing equation for the long-term trend as measured by a tide gauge minimally impacted by non-GIA vertical
land motion:

HAMLINGTON ET AL.

2130



@AGU Journal of Geophysical Research: Oceans 10.1002/2017JC013486

SLT(r)= GIA(r)+IB(r)+ IM(r)+OD(r)+GW(r)+Wi(r) + GC (1)

where GIA is the relative sea level trend contribution of the glacial isostatic adjustment (combining both
the vertical land motion and geoid effects of GIA), IB is the contribution from long-term trends in atmo-
spheric loading at each tide gauge, IM is the regionally varying trend associated with the self-attraction/
loading patterns of ice melt, OD is the regionally varying trend associated with changes in ocean dynamics
and the phasing of internal variability, GW is the regional pattern of sea level change resulting from ground-
water depletion, Wl is the regional pattern associated with water impoundment in reservoirs and dams, and
GCis a globally uniform trend that includes the contribution of thermal expansion. Note that all the compo-
nents of the equation other than GC varying spatially, denoted by the (r) for each contributor. It should be
noted that while we describe the term GC as dominantly associated with thermal expansion, other contribu-
tors to 20" century GMSL that are not considered directly in our technique or incorrectly accounted for in
our randomization procedure will also be included in GC. Further discussion on this term is provided in the
remainder of the paper. Here, we are interested in generating a 20™ century regional trend map associated
with the last five terms on the right hand side of equation (1), but also attempt to understand the uncer-
tainty that arises when trying to account for the other terms.

Trends associated with the inverted barometer (IB) effect using the mean of three 20" century atmospheric
pressure data sets are first removed from the set of 15 tide gauges, following the results and discussion
from Piecuch et al. (2016). To account for and remove the trends associated with GIA, we generate new sol-
utions using the method from Caron et al. (2017), a Bayesian approach that provides expected GIA esti-
mates and uncertainties thereof. In our case, the solid Earth model features a mantle with Maxwell
rheology, and the reference ice history model is the ANU (Lambeck et al., 2010, 2014) model in the Nothern
Hemisphere, the Ivins et al. (2013) model in Patagonia, and the lvins and James (2004) model in Antarctica.
The inversion is constrained by 11,451 relative sea level records and 459 GPS stations. Fingerprints of rela-
tive sea level rise associated with mass redistribution over the Earth’s surface are computed following the
technique of Adhikari et al. (2016), and used to account for the regional trend variability associated with IM,
GW and WIL. In total, nine of these fingerprints are used - five associated with glaciers, two associated with
the ice sheets, and one each for groundwater withdrawal and water impoundment.

To account for the regional variability of the trends associated with changes in OD, a sea level reconstruc-
tion of climate variability during the 20™ century is used. As demonstrated in Calafat et al. (2014), commonly
used reconstruction techniques have difficulty in accounting for the long-term global trend and accurately
representing the variability about this trend. Specifically, when including a spatially constant basis function
to account for the long-term trend in global mean sea level, the ability to describe the variability about the
long-term trend — both globally and regionally — is dramatically reduced. By applying the conclusions of
that study regarding the inclusion of a spatially constant basis function and following the technique of
Hamlington et al. (2012), a sea level reconstruction is created specifically focused on reconstructing the vari-
ability about the long-term trend from 1900 to 2014. No attempt is made to account for the long-term trend
in global mean sea level, and instead patterns describing the fluctuations about the trend associated with
internal variability are reproduced back to 1900. Specifically, the global mean of the altimeter record is
removed prior to computing cyclostationary empirical orthogonal basis functions (CSEOFs) for the recon-
struction. The resulting CSEOF decomposition does not return a basis function that describes the global
trend in the altimeter GMSL, and following the discussion in Calafat et al. (2014), we do not include a spa-
tially constant basis function to capture this trend. The focus here is on accurately representing the variabil-
ity about this trend. It should be noted that - as with any reconstruction - it can be difficult to ascertain the
full extent of the variability that is being reconstructed, and we leave open the possibility of biasing
unaccounted-for variability in ways that are difficult to estimate. As described in Hamlington et al. (2012),
representing the variability about the trend with tide gauge data alone is a challenge given the poor sam-
pling in the first half of the 20" century. As a result, past sea surface temperature observations are used to
supplement the reconstruction. Specifically, we use an ensemble of one thousand Extended Reconstructed
Sea Surface Temperature (ERSST) v4 data sets (Huang et al, 2015). This reconstructed SST data set is a
gridded global monthly data set derived from the ICOADS but with enhanced spatial completeness using
statistical methods. A separate sea level reconstruction is created for each data set in the ensemble, allow-
ing us to capture the uncertainty arising from both the sea level and sea surface temperature portions of
the reconstruction. Further details on this technique can be found in Hamlington et al. (2012), with the
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main difference being the exclusion of the long-term trend in global mean sea level. In using this recon-
struction to account for the trends associated with OD, we assume that spatial differences in long-term
dynamic trends occur primarily due to phasing of decadal and multidecadal climate modes. We subsample
the sea level reconstruction at the tide gauge locations, and - using only the time span actually covered by
the tide gauge record — compute the trends represented by OD in equation (1) above. As a second, alterna-
tive method of accounting for the OD-related trends, we also implement EOFs of the CMIP5 dynamic trends
as in Thompson et al. (2016). It should be noted, however, that since the models do not capture the phasing
of internal variability, the trends cannot be computed over the specific time period that the tide gauges
actually cover. Correctly accounting for and removing the OD trend associated with the time period actually
covered by the tide gauge record has potentially important implications for the results in this study.

3. Randomization Procedure

After the trend associated with the IB effect is removed, combinations of GIA trends, ocean dynamic trends, and
amplitudes of the mass redistribution fingerprints are randomly generated. These combinations are drawn
according to constraints placed on each contributor. For the GIA corrections, values for each gauge are drawn
from a multivariate normal distribution centered on the expected value from the Bayesian framework and
accounting for the covariance between the GIA signal at the 15 locations (Caron et al., 2018). The distributions
from which the amplitudes of the fingerprints are drawn are formed based on the state of knowledge in recent
literature as described in Thompson et al. (2016). The discussion of the amplitude selection is summarized briefly
here, and the interested reader is referred to Thompson et al. (2016) for further details. Recent synthesis studies
of twentieth century cryospheric observations estimate that the total amount of glacier melt outside of Greeland
and Antartica has 90% confidence interval of (0.47 0.61) mm/yr (Church et al. 2013; Vaughan et al., 2013). Ampli-
tudes for the five glacier fingerprints are thus constrained to sum to the same confidence interval. Melt from
Greenland glaciers has a 90% confidence interval of (0.1 0.19) mm/yr, while melt from the Greenland ice sheet is
much more uncertain with model estimates suggesting a range of +/— 0.25 mm/yr (Gregory et al., 2013). Based
on these estimates, the amplitude of the Greenland fingerprint is modeled as the sum of the randomly slected
Greenland glacier melt rate plus a random number representing the ice sheet melt from a distribution with a
90% confidence interval of +/— 0.25 mm/yr. Finally, Gregory et al. (2013) and Huybrechts et al. (2011) loosely
constrain the Antarctic melt rate during the twentieth century to be between —0.2 mm/yr and 0.5 mm/yr. Ampli-
tudes for the Antarctic fingerprint are thus chosen from a 90% probability range of (—0.2 0.5) mm/yr. Based on
geodetic observations, the total amount of melt from all sources is constrained to be less than 1 mm/yr, which is
enforced once amplitudes for each fingerprint are generated (Mitrovica et al., 2006). Thompson et al. (2016) did
not incorporate fingerprints for GW ad WI. The amplitudes for these contributions were drawn from normal distri-
butions with means of 0.17 mm/yr (Wada et al., 2012) and —0.16 mm/yr (Lehner et al., 2011). and standard devia-
tions of 0.07 mm/yr and 0.1 mm/yr, respectively. It should be noted that the WI fingerprint used here accounts
for only 60% of the global reservoir storage, leading to a reduced estimate of the contribution of reservoirs to
GMSL over the past century. Furthermore, both of these contributions are known to change over the course of
the 20" century, although here we work only with the 20" century rate contribution and ignore the variations
about this long-term trend or any acceleration. Finally, it is assumed in this randomization procedure that the
generated amplitudes and the associated contributions of each fingerprint are independent, which in reality is
not the case. The dependence of these contributions is not explicitly accounted for and can be viewed as a short-
coming of this analysis. By retaining only combinations that reduce the spread of the trends in the tide gauges
(see below), however, it is unlikely that a set of amplitudes will be generated that are very inconsistent. Regard-
less, this potential limitation should be kept in mind in the results presented here.

As mentioned above, two different cases are tested resulting from using two different techniques for repre-
senting the OD trends. In the first case, reconstructed trends are selected from an ensemble of one thou-
sand 20™" century reconstructions, representing the uncertainty in the representation of periodic climate
variability. For the second case amplitudes for the CMIP5 EOFs are randomly generated from the informa-
tion in the principal component time series associated with the spatial component of the EOFs, again fol-
lowing the method of Thompson et al. (2016).

Only combinations reducing the spread of the trends computed using the available data at each tide gauge
during the 20" century are retained. In other words, after subtracting the trends associated with GIA, ocean
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dynamics and the fingerprints, the standard deviation of the residual trends must be lower than the stan-
dard deviation of the tide gauge trends after subtracting the IB correction. More specifically, we seek combi-
nations that reduce the standard deviation below a 0.2 mm/yr threshold. While this cutoff is arbitrary,
subtracting the mean of the GIA solution reduces the standard deviation to 0.28 mm/yr from 0.52 mm/yr,
the standard deviation of the IB-corrected tide gauge trends. As we are interested primarily in the non-GIA
sea level trends, we seek combinations that reduce the standard deviation below 0.28 mm/yr. As demon-
stration of the sensitivity of the randomization procedure to this cutoff, we also perform a case with a stan-
dard deviation cutoff of 0.25 mm/yr that is presented in the supplementary material (supporting
information Figures S2 and S3). In principle, combinations that produce the lowest standard deviations
could be stated to produce the optimal 20" century trend map as they would reduce the spread of the tide
gauge trends the greatest, and subsequently result in a trend map that most closely represents the actual
tide gauge-measured trends. We also compute a case with a cutoff of 0.15 mm/yr using the sea level recon-
struction to account for the OD component of equation (1) and find little difference compared to the case
with the 0.20 mm/yr cutoff. As a final note, it is possible to perform the randomization test without requiring
a cutoff. The result is a normal distribution of standard deviations in the estimated TG trends, centered
roughly around 0.28 mm/yr (the standard deviation from the GIA correction alone). Since we are most inter-
ested in larger reductions in the spread, we would likely immediately subsample this distribution to keep
only lower standard deviations. For this reason, we choose to apply a cutoff directly and generate more
combinations that reduce the spread to the lower level defined by this cutoff.

The randomization process was repeated until 10* combinations are generated in both the case for the
reconstruction and the case for the CMIP5 EOFs. A final correction was made to each individual trend map
to account for the term GC in equation (1), representing the spatially constant contributors, such as thermal
expansion, that lead to a uniform sea level rise on a global scale. The trends for the fingerprints and recon-
struction (or CMIP5 dynamic trends) were subsampled at the tide gauge locations and averaged, and were
then compared to the average of the actual GlA-corrected tide gauge trends. The difference of these two
values was added to the total trend map. The result of this process is a trend map that when averaged glob-
ally results in an estimate that can be compared to the tide gauge bias-corrected global trend described in
Thompson et al. (2016), while further agreeing with the mean of the GlA-corrected TGs trends at those spe-
cific locations. This procedure is completed for each of the 10? randomly generated combinations, resulting
in 10* trend maps. Uncertainty in the individual contributors and estimated trend maps is computed using
the spread of these combinations. Note that all uncertainty estimates are given as one standard deviation.

4, 20" Century Regional Sea Level Trends

The resulting 20™ century regional trend maps are shown for the case using the sea level reconstruction in
Figure 1a and for the case using the CMIP5 EOFs in Figure 2a. These trend maps are then subsampled at the
tide gauge locations and compared to the actual GlA-corrected trends for each of the 15 gauges (Figures
1b and 2b; blue: reconstruction-modeled (1B) and ensemble-modeled (2B), red: observed GlA-corrected).
Uncertainty in the 20" century trends is also estimated and shown in Figures 1c and 2c. Uncertainties are
comparatively larger in the vicinity of major ice melt sources and, in Figure 2c based on CMIP5 output,
around strong ocean currents. The reconstructed trend maps in Figures 1 and 2 compare favorably in many
areas, although significant areas of disagreement in the open ocean are apparent. Notable areas of agree-
ment include the increased sea level rise in the southern hemisphere, particularly in the Indian and Atlantic
Oceans. Above average sea level rise is seen in both cases in large parts of the Atlantic Ocean, while lower
sea level rise in the northern Indian Ocean associated with a combination of groundwater withdrawal and
glacier melt is found in both instances (fingerprints shown in supporting information Figure S1). The most
prominent disagreement is in the tropical Pacific, where the east-west gradient of above average to below
average sea level rise is much stronger when using the sea level reconstruction. This discrepancy is similarly
seen in the comparison to the actual tide gauge rates, with the CMIP5-generated trends significantly under-
estimating the tide gauge rate at San Diego. Likely contributing to this result, the east-west trend dipole
that is visible in the tide gauge and satellite altimeter data are generally underestimated in the CMIP5
ensemble whereas the sea level reconstruction is able to accurately represent this gradient in sea level
trends across the Pacific. This explanation is speculation, however, as the case using the CMIP5 also overesti-
mates the trend in San Francisco. The difference between the subsampled rates and the actual rates is
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Figure 1. (a) 20"-century trend map generated using the sea level reconstruction to account for trends associated with
the phasing of internal variability. (b) Comparison of the GIA-corrected trends (red) and the trends from A (blue) sub-
sampled at the 15 tide-gauge locations. The mean absolute difference between the actual rates and the generated rates
is 0.08 mm/yr. ()Uncertainty in the 20™ century trends.

below 0.2 mm/yr for all of the gauges in the sea level reconstruction case (mean absolute difference of
0.08 mm/yr), while 13 of the 15 gauges have trend differences below 0.2 mm/yr for the CMIP5 case (mean
absolute difference of 0.11 mm/yr). While independent comparisons to other tide gauges beyond the set of
15 would add potentially add confidence to the generated trend maps, most of the other candidate tide
gauges that generally meet are editing criteria are nearby to gauges that have been already been included
and would thus likely lead to a favorable comparison without providing a particularly stringent test. Other
tide gauges in more remote areas not covered by the set of 15 are significantly shorter than our current
requirements. In the supplementary material of Thompson et al. (2016), several tide gauges were discussed
in detail and the reasons for exclusion were outlined. Due to all of these issues, further comparisons could
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Figure 2. (a) 20"-century trend map generated using CMIP5 EOFs to account for trends associated with the phasing of
internal variability. (b) Comparison of the GIA-corrected trends (red) and the trends from Figure 2a (blue) subsampled at
the 15 tide-gauge locations. The mean absolute difference between the actual rates and the generated rates is 0.11 mm/
yr. (¢) Uncertainty in the 20" century trends.

have the purporse of providing an undue increase in the confidence in the generated trend maps, or pro-
vide a inexact test based on the construction of our approach. We do note that further work in this direction
to verify the regional trend maps is warranted and should be pursued, if possible.

The GIA-corrected trends for the 15 gauges shown in Figures 1b and 2b are slightly different between the
two different OD cases. This results from differences in the trends associated with GIA that are estimated in
the randomization process. Figure 3 shows the expected value for the GIA rates (blue), the estimated GIA
rates from the randomization process using the sea level reconstruction (red), and the estimated GIA rates
from the randomization process using the CMIP5 (black). The spatial variability of the three sets is very simi-
lar, but the mean contribution of GIA in each case differs, with values of 0.24 mm/yr, 0.14 mm/yr, and
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Figure 3. Trends associated with GIA for the 15 tide gauges as estimated from the randomization procedure using the
reconstruction (red), and the CMIP5 EOFs (black) to account for the OD trends. The expected value for the GIA trends
from the model is shown in blue, along with error bars representing the 95% confidence interval.
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Figure 4. 20™ century sea level trends associated with ice-melt, ground water pumping, water impoundment, and global
mean thermal expansion for the case using the sea level reconstruction (A) and the CMIP5 EOFs (B).
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Table 1

GMSL Contribution in mm/yr of Each Individual Melt Fingerprint Obtained

Through the Randomization Procedure

0.19 mm/yr respectively. Contributing to these differing GIA contribu-
tions and further complicating the comparison between the two test
cases is the difference between the OD trends represented by the

Contribution

reconstruction and CMIP5. Since the reconstruction provides data for

Alaska

Canada
Asia/Alps
Iceland/Russia/Svalbard
Patagonia
Antarctica
Greenland
Groundwater
Reservoir

Total Mass
Global Constant
GMSL

Recon. CMIPS the entire 20™ century with a realistic representation of the internal
0.13+0.09 008£0.09  yariability, the trends can be computed for the specific time period
0.10 = 0.10 0.10 = 0.10 R .
0,09+ 0,09 013 + 0.09 covered by each individual tld'e gauge .record. The CMIP5 EQFS 'are
0.13 = 0.09 012+009 computed from the trends, with no adjustment made for differing
0.07 + 0.08 0.10+008  record lengths. This would suggest that the sea level reconstruction is
0.06 +0.16 0.11+0.15  more appropriate for accounting for the OD component given the
=l BSRG ) record lengths of the 15 gauges used here, although this point is diffi-
0.10 = 0.06 0.05 + 0.07 | it

~0.14+0.09 —014=010  Culttoverily.
ggg = 8;; ggg = g;g By removing the spatial trend variability associated with the term OD
+0. .89 = 0. . . .
162 = 028 150+040 N equation (1) as represented by the reconstruction and CMIP5 EOFs,

Note. GMSL estimates are shown for both methods of accounting for the
ocean dynamic signal, the sea level reconstruction and CMIP5. Uncertainty
estimates represent one standard deviation as obtained by the 10°
combinations generated through the randomization procedure.

the spatial pattern of long-term sea level rise associated with mass
redistribution (terms IM, GW, WI) can be isolated. Furthermore, by
forcing the trends at the tide gauge locations obtained from the maps
in Figures 1 and 2 to have the same mean trend as the actual GIA-
corrected trends, we can include the trend represented by GC in
equation (1) that includes the contribution from global mean thermal expansion. The resulting trends aris-
ing from the combination ice melt and this globally constant trend are shown in Figure 4. There is consider-
able agreement between the two generated trend maps. Higher than average sea level rise is found off the
U.S. west coast and in the southern Indian and Atlantic Oceans, with lower than average sea level rise in the
south Pacific and northern parts of the Atlantic, Indian and Pacific Oceans.

While estimating regional sea level rise, we can estimate the contribution of each term in equation (1) to
global mean sea level rise during the 20" century (Table 1). The fingerprints used are spatially correlated
and the uncertainty range is large for most contributors so we avoid over-analyzing the global contribution
of any individual fingerprint. Combined, however, mass redistribution (includes ice melt, groundwater with-
drawal and water impoundment) contributes 0.64 +/— 0.22 mm/yr and 0.69 +/— 0.20 mm/yr in the cases
of the reconstruction and the CMIP5, respectively, within the ranges described by other studies (e.g., Church
et al.,, 2013; Mitrovica et al., 2006; Vaughan et al., 2013). Ensuring the final trend map has the same mean at
the subsampled tide gauge locations as the GlA-corrected tide gauge trends (using the GIA corrections
shown in Figure 3), the GC contributes a further 0.98 +/— 0.23 mm/yr and 0.89 +/— 0.20 mm/yr over the
20" century for the reconstruction and CMIP5, respectively. This leads to a final estimate of global mean
sea level rise in the 20" century of 1.63 +/— 0.33 mm/yr and 1.59 +/— 0.40 mm/yr. Finally, with the mean
of the GIA-corrected tide gauge trends 1.55 mm/yr and 1.50 mm/yr for the two cases, it is found that the
tide gauge locations considered here under-sampled the global rate by 0.08 mm/yr and 0.09 mm/yr, respec-
tively. This is in agreement with the estimate of Thompson et al. (2016), with the addition of taking into
account the additional contributions of groundwater withdrawal and water impoundment which approxi-
mately cancel out in their contribution to GMSL. This should not be taken as a validation of the results in
Thompson et al. (2016) given the similar approach and the same underlying data that have been used.
Instead, it is used a check on the modified technique presented here, arriving at an expected similar result
to that previously presented.

5. Discussion and Conclusion

Assessing the absolute quality and accuracy of the reconstructed trend maps presented here is difficult due
to a lack of additional independent data. While it might initially seem worthwhile to use other tide gauges
as an independent verification of the generated trend maps, such comparisons are a challenge, specifically
because few tide gauges span the complete record considered here (1901-2000). The trend associated with
ocean dynamics can and does vary dramatically depending on the start and end date of the record. As
such, the 20" century trend patterns here will not necessarily be representative of the trend at a tide gauge
with a shorter record. While the sea level reconstruction could be used to account for this problem, the
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presence of non-GIA vertical land motion and uncertainty in GIA corrections prohibits the use of many of
long tide gauge records for the purposes of comparison. Several recent studies have used GPS-measured
trends at or near the tide gauges to remove trends associated with the relative motion of land (e.g.,
Dangendorf et al., 2017; Hamlington et al. 2016a; Woppelmann & Marcos, 2016), but in the case of our 15
gauges, questions remain as to how representative these GPS rates are. Our attempts to correct 20" cen-
tury rates from long tide gauge records using GPS for the vertical land motion component of relative sea
level rise (results not shown) demonstrated that corrections derived directly from GPS measurements for
the gauges considered here lead to a large increase in the spread amongst the estimated trends. The
increase in spread implies that the GPS-based corrections, in this specific case using the 15 gauges, is per-
haps introducing error into the calculations. It should be noted that while efforts have been made to
select tide gauges relatively unaffected by non-GIA vertical land motion, any remaining and thus uncor-
rected vertical land motion will impact the resulting trend maps. As an example, there is recently pub-
lished evidence of non-GIA vertical land motion at the Fremantle tide gauge that was used in this study
(Featherstone et al., 2015).

With regards to the correction for GIA relative sea level rates, this study does highlight a large source of
uncertainty in the 20" century estimate of global mean sea level that has been discussed in previous stud-
ies (e.g., Jevrejeva et al., 2014). The results presented here suggest that this could lead to an underestimate
of the uncertainty in the 20" century global rate, although this again may be specific to the set of tide
gauges used here. Using the reconstruction, the randomization procedure returns a 95% confidence interval
on the mean contribution of GIA at the tide gauge locations ranging from —0.01 mm/yr to 0.29 mm/yr. A
higher estimate of the mean in the GlA-related trends at the tide gauge would simply serve to lower the
estimate of the trend in global mean sea level provided in Table 1 without dramatically altering the spatial
variability in the trends maps shown in Figures 1, 2, and 4. Specifically, the estimate of GC would change
with adjustments in the mean of the GlA-related trends. A higher GMSL contribution from GIA would lower
the estimate of GC, while a lower contribution would increase the estimate of GC. When compared to the
results of Thompson et al. (2016), incorporating uncertainty in the GIA correction does lead to an increase
of the uncertainty in the estimate of the 20™ century trend in GMSL. In summary, improving the estimates
of how GIA impacts sea level measurements taken by tide gauges is critical to our understanding of 20
century sea level.

It is worth noting that the GMSL trend is larger than other recently published estimates covering a similar
time period (e.g., Dangendorf et al., 2017; Hay et al., 2015). Based on their location, the 15 gauges selected
here underestimate the positive contribution of 5 of the 7 ice fingerprints along with the contribution from
GW, and overestimate the negative contribution from WI. In order for the estimate of GMSL rise during the
20" century to be lower than provided here, we can consider the following possible situations: 1) the 15
tide gauges are on average significantly impacted by non-GIA subsidence; 2) the average GIA contribution
is significantly underestimated; 3) the distributions from which the amplitudes of the fingerprints are drawn
are incorrect; 4) there is a negative global trend associated with OD that is not being accounted for; and 5)
a relatively large contribution to regional and global sea level is unaccounted for. We consider (4) and (5) to
be unlikely, and checking and accounting for (3) is beyond the scope of an individual paper. It is possible
that (1) and (2) could lead to an overestimate of the trend in GMSL and subsequently GC, and require fur-
ther investigation in the future. Also, while it would not impact the GMSL trend estimate obtained here, an
increase in the estimated GMSL rise resulting from mass redistribution fingerprints would lead to a decrease
in the contribution associated with GC.

Even with the described uncertainties and caveats, this study represents a comprehensive attempt to
understand regional sea level trend variability during the 20" century applying the current method. We
have sought to simplify the process of constructing a map of regional sea level rise by reducing uncertainty
and complexity wherever possible and leveraging the best available information about the spatial variability
in long-term sea level trends. While the randomization procedure and use of a small subset of available tide
gauge records has limitations, the methods and results presented here represent an attempt to transpar-
ently parse the leading-order contributions to regional 20™ century sea level trends. We view this study as
the foundation for a more formal approach to be pursued in future studies. On a fundamental level, the
generated spatial patterns of 20™ century sea level rise meet the essential requirement of agreeing with the
highest-quality and longest tide gauge records. While seemingly a very basic requirement, this criterion has
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not been prioritized by previously published studies. Beyond this, this study yields important information
for planning purposes. On century timescales, considerable spatial variability in regional trends can occur,
spanning a range of several mm/yr. The spatial variability of trends is essential to understand when plan-
ning for future sea level rise at a particular location. This study also emphasizes the need to account for nat-
ural, periodic variability that can serve to obscure the sea level trends associated with global warming. In
particular, Figure 4 shows the regional trend pattern most closely linked to anthropogenic forcing and thus
may be indicative of the regional variability of sea level rise in the future. It is these trends that are of partic-
ular interest for long-term planning as they arise from contributors that are secular in nature and may be
expected to persist into the future. From this figure, the western Pacific, and southern Indian and Atlantic
Oceans would be expected to have sea level trends greater than the global mean. It is important to note
that the trends represented here do not take into account changes in reference due to GIA or non-GIA verti-
cal land motion. For example, the lower trends off the eastern United States shown in Figure 4 are signifi-
cantly higher when including the impact of GIA. The goal of this study, however, is on isolating the trends
most closely linked to anthropogenic forcing and obtaining a better understanding of how these trends
vary regionally.
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