6,101 research outputs found

    Dynamics and High Energy Emission of the Flaring HST-1 Knot in the M 87 Jet

    Full text link
    Stimulated by recent observations of a radio-to-X-ray synchrotron flare from HST-1, the innermost knot of the M 87 jet, as well as by a detection of a very high energy gamma-ray emission from M 87, we investigated the dynamics and multiwavelength emission of the HST-1 region. We study thermal pressure of the hot interstellar medium in M 87 and argue for a presence of a gaseous condensation in its central parts. Interaction of the jet with such a feature is likely to result in formation of a converging reconfinement shock in the innermost parts of the M 87 jet. We show that for a realistic set of the outflow parameters, a stationary and a flaring part of the HST-1 knot located \~100 pc away from the active center can be associated with the decelerated portion of the jet matter placed immediately downstream of the point where the reconfinement shock reaches the jet axis. We discuss a possible scenario explaining a broad-band brightening of the HST-1 region related to the variable activity of the central core. We show that assuming a previous epoch of the high central black hole activity resulting in ejection of excess particles and photons down along the jet, one may first expect a high-energy flare of HST-1 due to inverse-Comptonisation of the nuclear radiation, followed after a few years by an increase in the synchrotron continuum of this region. If this is the case, then the recently observed increase in the knot luminosity in all spectral bands could be regarded as an unusual echo of the outburst that had happened previously in the active core of the M 87 radio galaxy.Comment: 30 pages, 7 figures included. Accepted for publication in MNRA

    ALMA polarimetric studies of rotating jet/disk systems

    Get PDF
    We have recently obtained polarimetric data at mm wavelengths with ALMA for the young systems DG Tau and CW Tau, for which the rotation properties of jet and disk have been investigated in previous high angular resolution studies. The motivation was to test the models of magneto-centrifugal launch of jets via the determination of the magnetic configuration at the disk surface. The analysis of these data, however, reveals that self-scattering of dust thermal radiation dominates the polarization pattern. It is shown that even if no information on the magnetic field can be derived in this case, the polarization data are a powerful tool for the diagnostics of the properties and the evolution of dust in protoplanetary disks.Comment: 9 pages, 3 figures, to appear in "Jet Simulations, Experiments and Theory. Ten years after JETSET, what is next ?", C. Sauty ed., Springer Natur

    Comparative Study on the Inhibitory Effects of α-Tocopherol and Radon on Carbon Tetrachloride-Induced Renal Damage

    Get PDF
    Since the 2011 nuclear accident in Fukushima, the effects of low-dose irradiation, especially internal exposure, are at the forefront of everyone’s attention. However, low-dose radiation induced various stimulating effects such as activation of antioxidative and immune functions. In this study, we attempted to evaluate the quantitative effects of the activation of antioxidative activities in kidney induced by radon inhalation on carbon tetrachloride (CCl4)-induced renal damage. Mice were subjected to intraperitoneal (i.p.) injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after i.p. injection of α-tocopherol (100, 300, or 500 mg/kg bodyweight). In case of renal function, radon inhalation at a concentration of 2000 Bq/m3 has the inhibitory effects similar to α-tocopherol treatment at a dose of 300–500 mg/kg bodyweight. The activities of superoxide dismutase and catalase in kidneys were significantly higher in mice exposed to radon as compared to mice treated with CCl4 alone. These findings suggest that radon inhalation has an antioxidative effect against CCl4-induced renal damage similar to the antioxidative effects of α-tocopherol due to induction of antioxidative functions

    Chandra Discovery of an X-ray Jet and Lobes in 3C 15

    Full text link
    We report the Chandra detection of an X-ray jet in 3C 15. The peak of the X-ray emission in the jet is 4.1'' (a projected distance of 5.1 kpc) from the nucleus, and coincident with a component previously identified in the radio and optical jets. We examine four models for the X-ray jet emission: (I) weak synchrotron cooling in equip., (II) moderate synchrotron cooling in equip., (III) weak synchrotron plus SSC cooling, and (IV) moderate synchrotron plus SSC cooling. We argue that case (II) can most reasonably explain the overall emission from knot C. Case (III) is also possible, but requires a large departure from equipartition and for the jet power to be comparable to that of the brightest quasars. Diffuse X-ray emission has also been detected, distributed widely over the full extent (63kpc x 25kpc) of the radio lobes. We compare the total energy contained in the lobes with the jet power estimated from knot C, and discuss the energetic link between the jet and the lobes. We argue that the fueling time (t_fuel) and the source age (t_src) are comparable for case (II), whereas t_fuel << t_src is likely for case (III). The latter may imply that the jet has a very small filling factor, ~10^{-3}. We consider the pressure balance between the thermal galaxy halo and non-thermal relativistic electrons in the radio lobes. Finally, we show that the X-ray emission from the nucleus is not adequately fitted by a simple absorbed power-law model, but needs an additional power-law with heavy absorption intrinsic to the source. Such a high column density is consistent with the presence of a dense, dusty torus which obscures the quasar nucleus.Comment: 14 pages, 8 figures, accepted for publication in A&

    Gamma-ray Spectral Evolution of NGC1275 Observed with Fermi-LAT

    Full text link
    We report on a detailed investigation of the high-energy gamma-ray emission from NGC\,1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray emitting region is now measured to be separated by only 0.46' from the nucleus of NGC1275, well within the 95% confidence error circle with radius ~1.5'. Early Fermi-LAT observations revealed a significant decade-timescale brightening of NGC1275 at GeV photon energies, with a flux about seven times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one-year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average >100 MeV gamma-ray spectrum of NGC1275 shows a possible deviation from a simple power-law shape, indicating a spectral cut-off around an observed photon energy of E = 42.2+-19.6 GeV, with an average flux of F = (2.31+-0.13) X 10^{-7} ph/cm^2/s and a power-law photon index, Gamma = 2.13+-0.02. The largest gamma-ray flaring event was observed in April--May 2009 and was accompanied by significant spectral variability above E > 1-2 GeV. The gamma-ray activity of NGC1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the gamma-ray source was detected at the very end of the observation, with the observed energy of E = 67.4GeV and an angular separation of about 2.4' from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed gamma-ray spectral evolution of NGC1275 in the context of gamma-ray blazar sources in general.Comment: 20 pages, 6 figures, accepted for publication in the Ap

    The X-ray Jet in Centaurus A: Clues on the Jet Structure and Particle Acceleration

    Full text link
    We report detailed studies of the X-ray emission from the kpc scale jet in the nearest active galaxy, Cen A. 41 compact sources were found within the jet, 13 of which were newly identified. We construct the luminosity function for the detected jet-knots and argue that the remaining emission is most likely to be truly diffuse, rather than resulting from the pile-up of unresolved faint knots. The transverse jet profile reveals that the extended emission has the intensity peak at the jet boundaries. We note that limb-brightened jet morphologies have been observed previously at radio frequencies in some jet sources, but never so clearly at higher photon energies. Our result therefore supports a stratified jet model, consisting of a relativistic outflow including a boundary layer with a velocity shear. In addition, we found that the X-ray spectrum of the diffuse component is almost uniform across and along the jet. We discuss this spectral behavior within a framework of shock and stochastic particle acceleration processes. We note some evidence for a possible spectral hardening at the outer sheath of the jet. Due to the limited photon statistics of the present data, further deep observations of Cen A are required to determine the reality of this finding, however we note that the existence of the hard X-ray features at outer jet boundaries would provide an important challenge to theories for the evolution of ultra-relativistic particles within the jets.Comment: 27page, 8 figures, ver2, accepted for publication in the Ap

    Implications of Variability Patterns observed in TeV Blazars on the Structure of the Inner Jet

    Get PDF
    The recent long look X-ray observations of TeV blazars have revealed many important new features concerning their time variability. In this paper, we suggest a physical interpretation for those features based on the framework of the internal and external shock scenarios. We present a simplified model applicable to TeV blazars, and investigate through simulations how each of the model parameters would affect to the observed light curve or spectrum. In particular, we show that the internal shock scenario naturally leads to all the observed variability properties including the structure function, but for it to be applicable, the fractional fluctuation of the initial bulk Lorentz factors must be small, with sigma_gamma / gamma_average < 0.01. This implies very low dynamical efficiency of the internal shock scenario. We also suggest that several observational quantities -- such as the characteristic time scale, the relative amplitude of flares as compared to the steady (``offset'') component, and the slope of the structure function -- can be used to probe the inner jet. The results are applied to the TeV blazar Mrk421, and this, within the context of the model, leads to the determination of several physical parameters: the ejection of a shell with average thickness of ~1E13 cm occurs on average every 10 minutes, and the shells collide ~1E17 cm away from the central source.Comment: 12 pages, 13 figures, to appear in Ap

    Kondo effect from a tunable bound state within a quantum wire

    Get PDF
    We investigate the conductance of quantum wires with a variable open quantum dot geometry, displaying an exceptionally strong Kondo effect and most of the 0.7 structure characteristics. Our results indicate that the 0.7 structure is not a manifestation of the singlet Kondo effect. However, specific similarities between our devices and many of the clean quantum wires reported in the literature suggest a weakly bound state is often present in real quantum wires
    corecore