Stimulated by recent observations of a radio-to-X-ray synchrotron flare from
HST-1, the innermost knot of the M 87 jet, as well as by a detection of a very
high energy gamma-ray emission from M 87, we investigated the dynamics and
multiwavelength emission of the HST-1 region. We study thermal pressure of the
hot interstellar medium in M 87 and argue for a presence of a gaseous
condensation in its central parts. Interaction of the jet with such a feature
is likely to result in formation of a converging reconfinement shock in the
innermost parts of the M 87 jet. We show that for a realistic set of the
outflow parameters, a stationary and a flaring part of the HST-1 knot located
\~100 pc away from the active center can be associated with the decelerated
portion of the jet matter placed immediately downstream of the point where the
reconfinement shock reaches the jet axis. We discuss a possible scenario
explaining a broad-band brightening of the HST-1 region related to the variable
activity of the central core. We show that assuming a previous epoch of the
high central black hole activity resulting in ejection of excess particles and
photons down along the jet, one may first expect a high-energy flare of HST-1
due to inverse-Comptonisation of the nuclear radiation, followed after a few
years by an increase in the synchrotron continuum of this region. If this is
the case, then the recently observed increase in the knot luminosity in all
spectral bands could be regarded as an unusual echo of the outburst that had
happened previously in the active core of the M 87 radio galaxy.Comment: 30 pages, 7 figures included. Accepted for publication in MNRA