1,349 research outputs found

    Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu2(BO3)2

    Full text link
    We report the observation of magnetic superstructure in a magnetization plateau state of SrCu2(BO3)2, a frustrated quasi-two-dimensional quantum spin system. The Cu and B nuclear magnetic resonance (NMR) spectra at 35 mllikelvin indicate an apparently discontinuous phase transition from uniform magnetization to a modulated superstructure near 27 tesla, above which a magnetization plateau at 1/8 of the full saturation has been observed. Comparison of the Cu NMR spectrum and the theoretical analysis of a Heisenberg spin model demonstrates the crystallization of itinerant triplets in the plateau phase within a large rhomboid unit cell (16 spins per layer) showing oscillations of the spin polarization. Thus we are now in possession of an interesting model system to study a localization transition of strongly interacting quantum particles.Comment: PDF file, 16 pages, 5 figure

    Peletização de sementes de Eucalyptus.

    Get PDF
    The production of genetically improved seed of Eucalyptus spp requires more detailed research on the nursery practices in order to avoid seed losses. Eucalyptus urophylla and Eucalyptus grandis seeds were processed by hand and by a gravity separator to get the desired separation of light and small seeds from those heavy and large. Each fraction obtained from the separation by hand and by the gravity separator was utilized in the pellenization process. The celofaz and the hiperfosfate were eficient respectivelly as adesive and as inert material. Separation by gravity reduced the number of pellets without seed due to the increase of the purity. Fraction medium and heavy were not significant and the utilization of both can be done. The pellets formed with the smallest seeds (fraction light and small ) were worse than those heavy and medium. Germination rate decreased with the icrease of the pellet size probably due to the barrier developted by the pelletization, showing the existance of a limit to the pellet size

    Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T

    Full text link
    The magnetization process of the orthogonal-dimer antiferromagnet SrCu2(BO3)2 is investigated in high magnetic fields of up to 118 T. A 1/2 plateau is clearly observed in the field range 84 to 108 T in addition to 1/8, 1/4 and 1/3 plateaux at lower fields. Using a combination of state-of-the-art numerical simulations, the main features of the high-field magnetization, a 1/2 plateau of width 24 T, a 1/3 plateau of width 34 T, and no 2/5 plateau, are shown to agree quantitatively with the Shastry-Sutherland model if the ratio of inter- to intra-dimer exchange interactions J'/J=0.63. It is further predicted that the intermediate phase between the 1/3 and 1/2 plateau is not uniform but consists of a 1/3 supersolid followed by a 2/5 supersolid and possibly a domain-wall phase, with a reentrance into the 1/3 supersolid above the 1/2 plateau.Comment: 5 pages + 10 pages supplemental materia

    SrCu_2(BO_3)_2 - a Two Dimensional Spin Liquid

    Full text link
    We study an extended Shastry-Sutherland model for SrCu_2(BO_3)_2 and analyze the low lying parts of the energy spectrum by means of a perturbative unitary transformation based on flow equations. The derivation of the 1-magnon dispersion (elementary triplets) is discussed. Additionally, we give a quantitative description (symmetries and energies) of bound states made from two elementary triplets. Our high order results allow to fix the model parameters for SrCu_2(BO_3)_2 precisely: J_1=6.16(10)meV, x:=J_2/J_1=0.603(3), J_\perp=1.3(2)meV. To our knowledge this is the first quantitative treatment of bound states in a true 2d model.Comment: 4 pages, 3 figures, Proceeding paper of the HFM2000 conference in Waterloo, Canada, Jun 200

    Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear.

    Get PDF
    The mammalian inner ear contains two sensory organs, the cochlea and vestibule. Their sensory neuroepithelia are characterized by a mosaic of hair cells and supporting cells. Cochlear hair cells differentiate in four rows: a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs). Recent studies have shown that Math1, a mammalian homolog of Drosophila atonal is a positive regulator of hair cell differentiation. The basic helix-loop-helix (bHLH) genes Hes1 and Hes5 (mammalian hairy and Enhancer-of-split homologs) can influence cell fate determination by acting as negative regulators to inhibit the action of bHLH-positive regulators. We show by using reverse transcription-PCR analysis that Hes1, Hes5, and Math1 are expressed in the developing mouse cochleae. In situ hybridization revealed a widespread expression of Hes1 in the greater epithelial ridge (GER) and in lesser epithelial ridge (LER) regions. Hes5 is predominantly expressed in the LER, in supporting cells, and in a narrow band of cells within the GER. Examination of cochleae from Hes1(-/-) mice showed a significant increase in the number of IHCs, whereas cochleae from Hes5(-/-) mice showed a significant increase in the number of OHCs. In the vestibular system, targeted deletion of Hes1 and to a lesser extent Hes5 lead to formation of supernumerary hair cells in the saccule and utricle. The supernumerary hair cells in the mutant mice showed an upregulation of Math1. These data indicate that Hes1 and Hes5 participate together for the control of inner ear hair cell production, likely through the negative regulation of Math1

    The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period

    Get PDF
    The Last Glacial Maximum (LGM; 21 000 yr before present) was a period of low atmospheric greenhouse gas concentrations, when vast ice sheets covered large parts of North America and Europe. Paleoclimate reconstructions and modeling studies suggest that the atmospheric circulation was substantially altered compared to today, both in terms of its mean state and its variability. Here we present a suite of coupled model simulations designed to investigate both the separate and combined influences of the main LGM boundary condition changes (greenhouse gases, ice sheet topography and ice sheet albedo) on the mean state and variability of the atmospheric circulation as represented by sea level pressure (SLP) and 200-hPa zonal wind in the North Atlantic sector. We find that ice sheet topography accounts for most of the simulated changes during the LGM. Greenhouse gases and ice sheet albedo affect the SLP gradient in the North Atlantic, but the overall placement of high and low pressure centers is controlled by topography. Additional analysis shows that North Atlantic sea surface temperatures and sea ice edge position do not substantially influence the pattern of the climatological-mean SLP field, SLP variability or the position of the North Atlantic jet in the LGM

    A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum

    Get PDF
    Using a simple parameterisation that resolves the first order global Nd isotopic composition (hereafter expressed as ε<sub>Nd</sub> in an Ocean Global Circulation Model, we have tested the impact of different circulation scenarios on the ε<sub>Nd</sub> in the Atlantic for the Last Glacial Maximum (LGM), relative to a modern control run. Three different LGM freshwater forcing experiments are performed to test for variability in the ε<sub>Nd</sub> oceanic distribution as a function of ocean circulation. Highly distinct representations of the ocean circulation are generated in the three simulations, which drive significant differences in ε<sub>Nd</sub>, particularly in deep waters of the western part of the basin. However, at the LGM, the Atlantic is more radiogenic than in the modern control run, particularly in the Labrador basin and in the Southern Ocean. A fourth experiment shows that changes in Nd sources and bathymetry drive a shift in the ε<sub>Nd</sub> signature of the basin that is sufficient to explain the changes in the ε<sub>Nd</sub> signature of the northern end-member (NADW or GNAIW glacial equivalent) in our LGM simulations. All three of our LGM circulation scenarios show good agreement with the existing intermediate depth ε<sub>Nd</sub> paleo-data. This study cannot indicate the likelihood of a given LGM oceanic circulation scenario, even if simulations with a prominent water mass of southern origin provide the most conclusive results. Instead, our modeling results highlight the need for more data from deep and bottom waters from western Atlantic, where the ε<sub>Nd</sub> change in the three LGM scenarios is the most important (up to 3 ε<sub>Nd</sub>. This would also aid more precise conclusions concerning the evolution of the northern end-member ε<sub>Nd</sub> signature, and thus the potential use of ε<sub>Nd</sub> as a tracer of past oceanic circulation
    • 

    corecore