201 research outputs found

    Uptake of systematic reviews and meta-analyses based on individual participant data in clinical practice guidelines: descriptive study.

    Get PDF
    To establish the extent to which systematic reviews and meta-analyses of individual participant data (IPD) are being used to inform the recommendations included in published clinical guidelines

    No benefits of statins for sudden cardiac death prevention in patients with heart failure and reduced ejection fraction: A meta-analysis of randomized controlled trials.

    Get PDF
    Statins showed mixed results in heart failure (HF) patients. The benefits in major HF outcomes, including all-cause mortality and sudden cardiac death (SCD), have always been discordant across systematic reviews and meta-analyses. We intended to systematically identify and appraise the available evidence that evaluated the effectiveness of statins in clinical outcomes for HF patients. Systematic review and meta-analysis. We searched, until April 28, 2016: Medline, Embase, ISI Web of Science and EBM reviews (Cochrane DSR, ACP journal club, DARE, CCTR, CMR, HTA, and NHSEED), checked clinicaltrials.gov for ongoing trials and manually searched references of included studies. We identified 24 randomized clinical trials that evaluated the efficacy of statins for HF patients. All randomized clinical trials were assessed for risk of bias and pooled together in a meta-analysis. Pre-specified outcomes were sudden cardiac death, all-cause mortality, and hospitalization for worsening heart failure. Statins did not reduce sudden cardiac death (SCD) events in HF patients [relative risk (RR) 0.92, 95% confidence interval (CI) 0.70 to 1.21], all-cause mortality [RR 0.88, 95% CI 0.75 to 1.02] but significantly reduced hospitalization for worsening heart failure (HWHF) although modestly [RR 0.79, 95% CI 0.66 to 0.94]. Nevertheless, estimated predictive intervals were insignificant in SCD, all-cause mortality and HWHF [RR, 0.54 to 1.63, 0.64 to 1.19, and 0.54 to 1.15], respectively. An important finding was the possible presence of publication bias, small-study effects and heterogeneity of the trials conducted in HF patients. Statins do not reduce sudden cardiac death, all-cause mortality, but may slightly decrease hospitalization for worsening heart failure in HF patients. The evaluation of the risk of biases suggested moderate quality of the published results. Until new evidence is available, this study supports the 2013 ACCF/AHA guidelines to not systematically prescribe statins in "only" HF patients, which should help avoid unnecessary polypharmacy

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer

    Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates.

    Get PDF
    Recently, multiple imputation has been proposed as a tool for individual patient data meta-analysis with sporadically missing observations, and it has been suggested that within-study imputation is usually preferable. However, such within study imputation cannot handle variables that are completely missing within studies. Further, if some of the contributing studies are relatively small, it may be appropriate to share information across studies when imputing. In this paper, we develop and evaluate a joint modelling approach to multiple imputation of individual patient data in meta-analysis, with an across-study probability distribution for the study specific covariance matrices. This retains the flexibility to allow for between-study heterogeneity when imputing while allowing (i) sharing information on the covariance matrix across studies when this is appropriate, and (ii) imputing variables that are wholly missing from studies. Simulation results show both equivalent performance to the within-study imputation approach where this is valid, and good results in more general, practically relevant, scenarios with studies of very different sizes, non-negligible between-study heterogeneity and wholly missing variables. We illustrate our approach using data from an individual patient data meta-analysis of hypertension trials. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd

    Effectiveness of drug interventions to prevent sudden cardiac death in patients with heart failure and reduced ejection fraction: an overview of systematic reviews.

    Get PDF
    To summarise and synthesise the current evidence regarding the effectiveness of drug interventions to prevent sudden cardiac death (SCD) and all-cause mortality in patients with heart failure with reduced ejection fraction (HFrEF). Overview of systematic reviews. MEDLINE, Embase, ISI Web of Science and Cochrane Library from inception to May 2017; manual search of references of included studies for potentially relevant reviews. We reviewed the effectiveness of drug interventions for SCD and all-cause mortality prevention in patients with HFrEF. We included overviews, systematic reviews and meta-analyses of randomised controlled trials of beta-blockers, angiotensin-converting enzyme inhibitors (ACE-i), angiotensin receptor blockers (ARBs), antialdosterones or mineralocorticoid-receptor antagonists, amiodarone, other antiarrhythmic drugs, combined ARB/neprilysin inhibitors, statins and fish oil supplementation. Two independent reviewers extracted data and assessed the methodological quality of the reviews and the quality of evidence for the primary studies for each drug intervention, using Assessing the Methodological Quality of Systematic Reviews (AMSTAR) and Grading of Recommendations, Assessment, Development and Evaluation(GRADE), respectively. We identified 41 reviews. Beta-blockers, antialdosterones and combined ARB/neprilysin inhibitors appeared effective to prevent SCD and all-cause mortality. ACE-i significantly reduced all-cause mortality but not SCD events. ARBs and statins were ineffective where antiarrhythmic drugs and omega-3 fatty acids had unclear evidence of effectiveness for prevention of SCD and all-cause mortality. This comprehensive overview of systematic reviews confirms that beta-blockers, antialdosterone agents and combined ARB/neprilysin inhibitors are effective on SCD prevention but not ACE-i or ARBs. In patients with high risk of SCD, an alternative therapeutic strategy should be explored in future research. PROSPERO 2017: CRD42017067442

    Impact of Aldosterone Antagonists on Sudden Cardiac Death Prevention in Heart Failure and Post-Myocardial Infarction Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Get PDF
    BACKGROUND AND OBJECTIVES: Sudden cardiac death (SCD) is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF) or post myocardial infarction (MI). Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects. METHODS: We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs) assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia). RESULTS: Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03); all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001) and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001). In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03), 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003) and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003), respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002) for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001) for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001) for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly increased. CONCLUSION: Aldosterone antagonists appear to be effective in reducing SCD and other mortality events, compared with placebo or standard medication in patients with HF and/or after a MI

    Meta-analysis of continuous outcomes: using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification.

    Get PDF
    Meta-analysis of individual participant data (IPD) is considered the "gold-standard" for synthesizing clinical study evidence. However, gaining access to IPD can be a laborious task (if possible at all) and in practice only summary (aggregate) data are commonly available. In this work we focus on meta-analytic approaches of comparative studies where aggregate data are available for continuous outcomes measured at baseline (pre-treatment) and follow-up (post-treatment). We propose a method for constructing pseudo individual baselines and outcomes based on the aggregate data. These pseudo IPD can be subsequently analysed using standard analysis of covariance (ANCOVA) methods. Pseudo IPD for continuous outcomes reported at two timepoints can be generated using the sufficient statistics of an ANCOVA model i.e., the mean and standard deviation at baseline and follow-up per group, together with the correlation of the baseline and follow-up measurements. Applying the ANCOVA approach, which crucially adjusts for baseline imbalances and accounts for the correlation between baseline and change scores, to the pseudo IPD results in identical estimates to the ones obtained by an ANCOVA on the true IPD. In addition, an interaction term between baseline and treatment effect can be added. There are several modelling options available under this approach, which makes it very flexible. Methods are exemplified using reported data of a previously published IPD metaanalysis of 10 trials investigating the effect of antihypertensive treatments on systolic blood pressure, leading to identical results compared with the true IPD analysis and of a meta-analysis of fewer trials, where baseline imbalance occurred. This article is protected by copyright. All rights reserved

    Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: statistical recommendations for conduct and planning

    Get PDF
    Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment‐covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta‐analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta‐analysis of randomized trials to examine treatment‐covariate interactions. For conduct, two‐stage and one‐stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta‐analysis results for subgroups; (ii) interaction estimates should be based solely on within‐study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta‐analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta‐analysis project should not be based on between‐study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta‐analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta‐analysis projects are used for illustration throughout

    Investigation of one-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application

    Get PDF
    Background: Joint modeling of longitudinal and time‐to‐event data is often advantageous over separate longitudinal or time‐to‐event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time‐to‐event outcomes. The current literature on joint modeling focuses mainly on the analysis of single studies with a lack of methods available for the meta‐analysis of joint data from multiple studies. Methods: We investigate a variety of one‐stage methods for the meta‐analysis of joint longitudinal and time‐to‐event outcome data. These methods are applied to the INDANA dataset to investigate longitudinally measured systolic blood pressure, with each of time to death, time to myocardial infarction, and time to stroke. Results are compared to separate longitudinal or time‐to‐event meta‐analyses. A simulation study is conducted to contrast separate versus joint analyses over a range of scenarios. Results: The performance of the examined one‐stage joint meta‐analytic models varied. Models that accounted for between study heterogeneity performed better than models that ignored it. Of the examined methods to account for between study heterogeneity, under the examined association structure, fixed effect approaches appeared preferable, whereas methods involving a baseline hazard stratified by study were least time intensive. Conclusions: One‐stage joint meta‐analytic models that accounted for between study heterogeneity using a mix of fixed effects or a stratified baseline hazard were reliable; however, models examined that included study level random effects in the association structure were less reliable
    corecore