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Multiple imputation for IPD
meta-analysis: allowing for heterogeneity
and studies with missing covariates
M. Quartagnoa*† and J. R. Carpentera,b

Recently, multiple imputation has been proposed as a tool for individual patient data meta-analysis with sporadi-
cally missing observations, and it has been suggested that within-study imputation is usually preferable. However,
such within study imputation cannot handle variables that are completely missing within studies. Further, if some
of the contributing studies are relatively small, it may be appropriate to share information across studies when
imputing. In this paper, we develop and evaluate a joint modelling approach to multiple imputation of individ-
ual patient data in meta-analysis, with an across-study probability distribution for the study specific covariance
matrices. This retains the flexibility to allow for between-study heterogeneity when imputing while allowing (i)
sharing information on the covariance matrix across studies when this is appropriate, and (ii) imputing variables
that are wholly missing from studies. Simulation results show both equivalent performance to the within-study
imputation approach where this is valid, and good results in more general, practically relevant, scenarios with
studies of very different sizes, non-negligible between-study heterogeneity and wholly missing variables. We
illustrate our approach using data from an individual patient data meta-analysis of hypertension trials. © 2015
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

The advantages of individual patient data (IPD) meta-analysis over the approach that simply obtains
and combines summary measures from different studies have been increasingly recognized [1, 2]. IPD
meta-analyses allow better understanding of, and hence more appropriate modelling for, between study
heterogeneity. They also allow for the estimation of interaction effects [3].

However, non-trivial proportions of missing covariate data are common in clinical IPD meta-analyses,
and the issues they raise need to be appropriately addressed. Such missing data can take two forms: (i)
missing data within studies (which we term sporadically missing data) and (ii) missing data because a
particular variable was not collected in a particular study. The latter situation frequently arises, as IPD
meta-analyses datasets are typically assembled post-hoc, and the individual studies have often followed
different protocols and collected different variables.

With sporadically missing data, one approach to the analysis is to restrict attention to the subset of
individuals with complete records. Where the studies have a large number of observations (so the resulting
loss of power is acceptable), and the chance of data being missing can be reasonably assumed not to
depend on the outcome (i.e. dependent variable) in our substantive model given the covariates (so that
bias is not a concern, see [4, p. 28]), this may be satisfactory.

However, there are many settings where the complete records analysis is not satisfactory. In these
cases, Rubin’s Multiple Imputation (MI) [4, 5] is a natural approach to consider. MI generates a number
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of ‘complete’ datasets by imputing missing data from an appropriate predictive distribution, conditional
on the observed data. The substantive model of interest is then fitted to each imputed dataset, and the
results combined for final inference using Rubin’s MI rules.

Construction of the appropriate predictive distribution for imputation requires—either explicitly or
implicitly—consideration of the joint distribution of the data. As discussed by [4, Chap. 3 and 4], if we
adopt a joint modelling approach, we explicitly specify this joint distribution. However, if we adopt the
full conditional specification approach (FCS, which proceeds by regressing, and then imputing, each
variable conditionally on all the others in turn, e.g. [6]), this is implicit. Burgess et al. [7] adopt the
FCS imputation approach for IPD meta-analysis with sporadically missing data. They impute separately
within each study, and show promising results across a range of scenarios with increasing heterogeneity.

Their results are a welcome addition to the statistician’s toolbox. However, there are a number of
practically important scenarios where this approach falls short:

(1) contributing studies may contain a large number of variables relative to the number of individuals,
so that within-study imputation is noisy;

(2) some contributing studies may not collect key variables, which are therefore missing for all
individuals within that study;

(3) data within contributing studies will often be hierarchical, with potentially missing values at both
levels of the hierarchy, and

(4) the substantive model contains interactions and non-linear effects, and we wish to impute consis-
tently with these.

In this article, we address these by describing and comprehensively evaluating a flexible, computationally
practical, joint modelling approach to imputation of IPD meta-analysis data.

Our approach builds on the multilevel multiple imputation approach described by [8] and imple-
mented in [9], by incorporating the idea of random covariances [10]. We show how introducing an
inverse-Wishart distribution (or potentially any other suitable distribution) for the study-specific covari-
ance matrices allows us to respect the between study heterogeneity, yet—in common with other random
effects models—borrow strength from larger studies when estimating the covariance matrix, and then
imputing, for smaller studies. The ability to do this in turn naturally allows imputation of variables that
are completely missing in a study—assuming missing at random—in a way that takes into account the
covariance matrix of the available variables from that study, so addressing the issues raised by [11]. In
particular, we do not impose a common covariance matrix across studies when imputing missing vari-
ables within a study—an approach that will lead to inconsistencies when (as will typically be the case)
this assumption is inappropriate.

Furthermore, while in the past implementations of joint modelling approaches have been relatively
computationally slow, the software written by the first author for the simulations and analyses presented
here has effectively removed this limitation.

The paper is organized as follows. Section 2 presents the meta-analysis and imputation models used
in this paper. In Section, 3 we present the results of a comprehensive simulation study to evaluate our
proposed approach. We begin with the scenarios considered by Burgess et al. [7], and then consider some
more challenging settings. In Section 4, we illustrate our approach using data from an IPD meta-analysis
of interventions to reduce blood pressure. We conclude with a discussion in Section 5.

2. Meta-analysis and multiple imputation models

Following [7], we consider a continuous outcome, y, and two continuous covariates, x1 and x2. Let s =
1,… , S index studies, and i index observations within a study.

2.1. Substantive analysis models

We consider the following substantive analysis models:

(1) One-stage homoscedastic regression

yi,s = 𝛽0,s + 𝛽1x1,i,s + 𝛽2x2,i,s + 𝜖i,s 𝜖i,s ∼  (0, 𝜎2) (1)

Note that model (1) makes the strong assumption of a common residual variance across studies, 𝜎2.
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(2) Two-stage fixed effects model

(a) Within each study s, simultaneously regress yi,s on x1,i,s and x2,i,s, obtaining estimates (𝛽j,s, ŝj,s)
(where ŝj,s is the estimated standard error of 𝛽j,s), for j = 1, 2;

(b) Fit the fixed effects meta-analysis model,

𝛽j,s = 𝛽fixed,j + ŝj,s𝜖s, 𝜖s ∼  (0, 1), (2)

for j = 1, 2.

(3) Two-stage random effects model

(a) Within each study s, simultaneously regress yi,s on x1,i,s and x2,i,s, obtaining estimates
(𝛽j,s, ŝj,s) (where ŝj,s is the estimated standard error of 𝛽j,s), for j = 1, 2;

(b) Fit the random effects meta-analysis model, using the DerSimonian/Laird estimate of
between study heterogeneity [12],

𝛽j,s = 𝛽random,j + uj,s + ŝj,s𝜖s, 𝜖s ∼  (0, 1); uj,s ∼ 

(
0, 𝜏2

j

)
(3)

for j = 1, 2.

2.2. Imputation models

Motivated by the reasons set out in the introduction, we describe a range of possible joint imputation
models, which allow progressively for greater between-study heterogeneity and for missing values in
one, two or all three of the variables y, x1, x2. In each case, we highlight the substantive model that the
imputation model is congenial with ([4, 13], p. 46).

(1) Single partially observed variable, common residual variance

As an example, suppose x2 is the variable with missing data. In this setting, the imputation model is:

x2,i,s = 𝛼0,s + 𝛼1x1,i,s + 𝛼2yi,s + 𝜖i,s

𝛼0,s = 𝛼0 + us

us ∼ 
(
0, 𝜎2

u

)
; 𝜖i,s ∼ 

(
0, 𝜎2

e

)
.

(4)

This imputation model is congenial with substantive model (1). The more general substantive mod-
els (2) and (3) can also be fitted. This model is equivalent to the homoscedastic stratified imputation
model used by [7].

(2) Single partially observed variable, study specific residual variance

Again, suppose x2 is the variable with missing data. In this setting, the imputation model is:

x2,i,s = 𝛼0,s + 𝛼1x1,i,s + 𝛼2yi,s + 𝜖i,s

𝛼0,s = 𝛼0 + us

us ∼ 
(
0, 𝜎2

u

)
; 𝜖i,s ∼ 

(
0, 𝜎2

e,s

)
.

(5)

This imputation model is not congenial with substantive model (1); however, it is congenial with
(2), and the more general (3) can also be fitted.

(3) Two partially observed variables, study specific covariance matrix

Now suppose y and x2 have missing data. Then, as described in [4], p. 81–85 and extended to the
multilevel setting in Chapter 9, we can use a bivariate response model to impute missing values of
y and x2 ∶

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015



M. QUARTAGNO AND J. R. CARPENTER

x2,i,s = 𝛼1
0,s + 𝛼1

1x1,i,s + 𝜖1
i,s

yi,s = 𝛼2
0,s + 𝛼2

1x1,i,s + 𝜖2
i,s

𝛼1
0,s = 𝛼1

0 + u1
s

𝛼2
0,s = 𝛼2

0 + u2
s(

u1
s

u2
s

)
∼ 

((
0
0

)
,Ωu

)
(
𝜖1

i,s

𝜖2
i,s

)
∼ 

((
0
0

)
,Ωe,s

)
(6)

This imputation model is not congenial with (1); if we are only interested in meta-analysing 𝛽1, it
is congenial with (2), and the more general (3) can also be fitted. When 𝛽2 is also of interest, only
(3) is congenial with this imputation model.

In our simulation studies in the succeeding section, only x2 will be affected by missingness.
Nevertheless, we will see that, in some cases, modelling y as a response is useful.

(4) Three partially observed variables, study specific covariance matrix

In general, the imputation model for this setting is not congenial with (1) or (2); however, it is
congenial with (3):

x2,i,s = 𝛼1
0,s + 𝜖1

i,s

yi,s = 𝛼2
0,s + 𝜖2

i,s

x1,i,s = 𝛼3
0,s + 𝜖3

i,s

𝛼1
0,s = 𝛼1

0 + u1
s

𝛼2
0,s = 𝛼2

0 + u2
s

𝛼3
0,s = 𝛼3

0 + u3
s⎛⎜⎜⎝

u1
s

u2
s

u3
s

⎞⎟⎟⎠ ∼ 

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0

⎞⎟⎟⎠ ,Ωu

⎞⎟⎟⎠⎛⎜⎜⎝
𝜖1

i,s
𝜖2

i,s
𝜖3

i,s

⎞⎟⎟⎠ ∼ 

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0

⎞⎟⎟⎠ ,Ωe,s

⎞⎟⎟⎠

(7)

Again, in our simulation study, only x2 has missing values, but nevertheless, modelling all three
variables as outcomes has advantages in general.

(5) Three partially observed variables, random study specific covariance matrix

This model is the same as (7), apart from the important extension that the ‘fixed’ study-specific
covariance matrix is replaced by a ‘random’ covariance matrix, that is:

Ωe,s ∼ (a,A) (8)

where a and A are the parameters of an inverse-Wishart distribution. We take the identity matrix
with minimum scale parameter as the inverse-Wishart prior for distribution of the study specific
covariance matrices throughout. In principle, other distributions could be used; we return to this
point in the discussion.

2.3. Some comments

Below—in order to assist with interpreting the simulation results—we distinguish between correctly
specified, compatible and incompatible imputation and analysis models.

In the correctly specified case, the data generating model is the same as the imputation model, and the
imputation model is congenial with the analysis model (essentially, fixed effects for coefficients with no
across-study heterogeneity, and random effects otherwise).

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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In the compatible case, the imputation model attempts to accommodate the heterogeneity present, and
the imputation and the substantive model are congenial. However, the data generating model does not
match the imputation model.

In the incompatible case, either the imputation model does not allow for between study heterogeneity
present in the data generation model, or the analysis model and imputation model are uncongenial.

With this in mind, we note that imputation model (7) allows us to share some information across studies,
through the random effects distribution for

(
𝛼1

0,s, 𝛼
2
0,s, 𝛼

3
0,s

)
. It is the congenial imputation model for the

multivariate random effects meta-analysis of (𝛽0, 𝛽1, 𝛽2). Models (6)–(4) make increasing restrictions on
the between study heterogeneity, as well as the number of variables with missing data.

If we modify (7) to have a separate fixed effects vector
(
𝛼1

0,s, 𝛼
2
0,s, 𝛼

3
0,s

)
for each study, it is equivalent

to imputing separately in each study using the multivariate normal distribution. For multivariate normal
data this is known to be equivalent to FCS ([4], p. 87–88) and practically equivalent in other settings [14].
Therefore, within-study joint-model imputation will give the same results as those reported by Burgess
et al. [7].

Importantly, in the light of our original motivation, none of (4)–(7) share information on the covariance
matrix across studies. Thus, none can impute a variable that is wholly missing in a study, because for such
studies, the study-specific covariance matrix is not estimable. To overcome this, we need to introduce a
random covariance matrix effect, that is, (8). A similar addition could be made to (5)–(7) if desired.

Even if we have a number of missing variables spread across the studies in the meta-analysis, model
(8) will still be estimable. In general, provided we have information from two or more studies about each
term in the covariance matrix, (8) should be estimable with minimal prior information. In fact, as this is a
Bayesian imputation model, we can in principle fit the model and impute however weak the information
in the observed data.

Using MI in the context of IPD meta-analysis begs the question: at which point in the procedure should
Rubin’s MI combination rules be applied? We can either

(1) apply Rubin’s rules to the imputed data for each study, resulting in a single summary from each
study, which is then meta-analysed (we term this Rubin’s rules then meta-analysis (RR then MA))
or

(2) perform a meta-analysis of each imputed dataset, and then summarize the results using Rubin’s
rules (i.e. MA then RR).

Burgess et al. [7] considered the imputation of sporadically missing data, concluding that in the
majority of cases, the best approach was to impute separately in each study. This is because in many
meta-analyses there will be important between-study heterogeneity, which needs to be respected in the
imputation process. If imputation is performed separately for each study contributing to the meta-analysis,
then their results showed that it was best to apply Rubin’s rules before meta-analysing the results. This
also implicitly calls for a two-stage analysis of the IPD data, rather than a one-stage analysis. However,
a one-stage analysis has the potential advantage of allowing us to borrow strength across studies, which
may be important for estimation of covariate and subgroup effects.

However, suppose we view the data as a whole, and that if there were no missing values, we intended to
fit a one-stage (hierarchical) analysis model. Now suppose we have missing data. If the data are imputed
together using our joint model, the usual MI justification tells us to fit the analysis model to each imputed
data set, and then apply Rubin’s rules. Although in practice, we may often replace the one-stage analysis
by the more common two-stage analysis, the same principle applies. In other words, the more we share
information across studies in the imputation process, the more we should prefer to apply Rubin’s rules
after meta-analysis.

2.4. MCMC algorithm for imputation model fitting and software

Imputation models (4)–(7) are all special cases of (8), and we outline our MCMC algorithm for fitting
model (8) in the appendix. We note that, as described in [4], p. 82–85, multivariate response models such
as (8) can be used when individuals have as few as one observation, and the others are missing at random.
When fitting, the imputation model and imputing using MCMC, at each iteration of the algorithm, miss-
ing observations for each patient are drawn from the correct conditional distribution given the patient’s
observed data and the current draw of the imputation model parameters. Thus, the imputation models
described are applicable with a general, non-monotone, pattern of missingness.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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There are only a few programs implementing multilevel imputation. The R package PAN [15] handles
multilevel continuous data but does not extend to fitting a separate covariance matrix for each study, or to
fitting random covariance matrices as in model (8). The package REALCOM [9] is a standalone program
written in MATLAB; the advantage of this program is its flexibility, because it is able to deal with binary,
categorical, ordinal and continuous data. However, it does not allow for random covariance matrices as
in model (8). We have therefore written a new R-package, jomo [16], which we have used for all the
analyses in this paper, and which has been submitted to Comprehensive R Archive Network [17]. This
package is considerably quicker than REALCOM, as it uses C subroutines.

3. Simulation studies

Here, we present the results of three simulation studies. In Section 3.1, we consider the same data gener-
ation mechanisms and scenarios as considered by [7]. We use this to explore whether the joint modelling
imputation strategy performs comparably with the within-study imputation approach. Section 3.4 goes
beyond the scenarios discussed by [7], exploring settings where in some studies there are few complete
records. The aim is to compare the random study-specific covariance matrix with the fixed study-specific
covariance matrix approach (itself one step removed from imputing separately in each study) in this
setting. Finally, in Section 3.5, we consider the setting of systematically missing variables.

For each simulated data set, the MI analysis used five imputations, with the MCMC sampler burned in
for 500 iterations, and with 100 between-imputation iterations. In more complex settings, more iterations
and imputations may be needed. However, in our setting, examination of the MCMC chains showed that
these numbers were sufficient for convergence of the sampler and stochastic independence of the imputed
data sets. Depending on the imputation model used, imputing the data took from 3 to 10 s per simulation.
This means that we were able to create five imputed datasets for 1000 simulations in each scenario in
less than 3 h.

Preliminary results showed that applying meta-analysis before Rubin’s rules was the best approach, as
expected given the discussion at the end of Section 2.3. We therefore use this order for the results later.

3.1. Simulations with equal size studies: setup

Here, we use the data generating mechanism considered by [7], that is,

yi,s = 𝛽0s + 𝛽1,sx1,i,s + 𝛽2,sx2,i,s + 𝜖i,s(
x1,i,s

x2,i,s

)
∼ 

((
0
0

)
,

(
1 𝜌s
𝜌s 1

))
𝜖i,s ∼ 

(
0, 𝜎2

s

)
.

(9)

Exactly as in [7], we generate data for 30 studies, each with 200 participants. We use the five scenarios
shown in Table I—which are the same as those considered by [7]—with increasing levels of heterogeneity
between studies.

For each scenario, we generated 1000 simulated datasets, and then made 50% of the values of x2
Missing At Random (MAR) dependent on x1. This covariate-dependent missingness mechanism means
that the complete records analysis will be unbiased, so we can readily assess the extent of the information
loss because of missing data, and the extent to which this is recovered using multiple imputation.

Because in scenarios 2–5, a consistent meta-analysis model requires study-specific residual variances
to be considered, one-stage meta-analysis is only appropriate for scenario 1, unless we use methods which
deal with complex level 1 variation in hierarchical models. As such models are still relatively rarely used
by meta-analysts, we present the results of two-stage meta-analyses only, returning to this point in the
discussion. For each scenario, we report both the estimates from a fixed-effects and from a random-effects
meta-analysis. The penultimate row of Table I shows for both 𝛽1 and 𝛽2, which one of the two is consistent
with the data. We expect some overestimation of the standard errors with random-effects meta-analysis
when the fixed-effects model is the consistent one. Conversely, when a random effects meta-analysis is
consistent, a fixed effects meta-analysis may underestimate the standard errors and hence result in poor
confidence interval coverage.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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Table I. Scenarios used to generate data from (9), and corresponding consistent (i) meta-analysis
and (ii) imputation models, when values of X2 are missing.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

𝛽0s  (3, 12)  (3, 12)  (3, 12)  (3, 12)  (3, 12)
𝜎2

s 1  (1, 0.32)  (1, 0.32)  (1, 0.32)  (1, 0.32)
𝜌s 0.2 0.2  (0.2, 0.22)  (0.2, 0.22)  (0.2, 0.22)
𝛽2s −0.6 −0.6 −0.6  (−0., 0.22)  (−0., 0.22)
𝛽1s 0.3 0.3 0.3 0.3  (0.3, 0.22)
Consistent meta- 𝛽1 ∶ fixed 𝛽1 ∶ fixed 𝛽1 ∶ fixed 𝛽1 ∶ fixed 𝛽1 ∶ random
analysis model 𝛽2 ∶ fixed 𝛽2 ∶fixed 𝛽2 ∶fixed 𝛽2 ∶ random 𝛽2 ∶ random
Simplest compatible
imputation model (4) (6) (7) (7) (7)

The bottom row of Table I shows which imputation model is the simplest compatible with the data
generation mechanism. Imputation models that are incompatible (too restrictive) are expected to lead to
bias. Imputation models that are more flexible than the data generation mechanism should not lead to
bias but may lead to some loss of information.

3.2. Simulations with equal size studies: results

Table II shows the results. Those from the correct meta-analysis model and simplest imputation model
compatible with the data generating mechanism are highlighted in bold. We now comment briefly on
each scenario.

Scenario 1: This is the most homogeneous scenario, because the only source of between-study het-
erogeneity comes from the different study-specific intercepts, 𝛽0,s, in the data-generating
algorithm. In this scenario, the simplest imputation model (4) is sufficient. Analysis of
datasets imputed with this model gives good results both in terms of bias, precision and
confidence interval coverage. We see some gain in precision compared with the complete
records analysis. Reassuringly, using the most general imputation model (8) gives similar
result under fixed-effects meta-analysis (the consistent analysis for this scenario). However,
when imputing with (8) and using the random effects analysis, additional variability allowed
for by the (8) is picked up by the random effects analysis, resulting in larger standard errors
and mild over-coverage.

Scenario 2: Here, imputation model (4) is not compatible with the data generation mechanism, as it
assumes a common variance 𝜎e across studies. Further, imputation model (5) is still not
compatible. This is because the data generating model allows the variance of y to vary across
studies, whereas imputation model (5) only allows the variance of x2 to vary across studies.
Therefore, to have sufficient flexibility for this scenario, we need to include y as a response
in the imputation model, by using (6). Using this imputation model, or the most general
imputation model (8), the findings are similar to those from scenario 1.

Scenario 3: Because this scenario has study specific correlations, 𝜌s, the simplest compatible imputation
model is (7). Using this imputation model, we once again obtain unbiased estimates and good
confidence interval coverage with the fixed-effects analysis, while the random-effects anal-
ysis leads to mild over-coverage for the confidence intervals. The more general imputation
model (8) gives very similar results.

Scenarios 4–5: Scenario 4 generalizes scenario 3 by adding a random effect for 𝛽2; scenario 5 further
adds a random effect for 𝛽1. The simplest compatible imputation model is therefore (7). First,
we see that—even with no missing data—using a fixed effects model for a random effect
leads underestimation of the standard error and under-coverage of the confidence interval.
Secondly, the results for 𝛽2 in scenarios 4 and 5 show that using an imputation model that is
incompatible (i.e. insufficiently flexible) can lead to bias (and some reduction in coverage)
particularly for the parameter estimate for the partially observed variable. Once again, when
used the appropriate meta-analysis, results from imputation model (7), and the more general
(8) show virtually no bias and good confidence interval coverage. Unlike with scenarios 1–3,

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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Table II. Simulation results with equal size studies.

Coefficient 1 Coefficient 2

Fixed effect Random effects Fixed effect Random effects
meta-analysis meta-analysis meta-analysis meta-analysis

Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

Scenario 1:
Complete data 0.300 0.013 94.9 0.300 0.014 95.7 −0.600 0.013 95.0 −0.600 0.014 95.8
Complete records 0.300 0.020 93.6 0.300 0.022 95.0 −0.600 0.019 93.3 −0.600 0.020 95.1
Imputation model (4) 0.300 0.016 93.3 0.300 0.016 94.1 −0.595 0.018 92.6 −0.595 0.018 93.9
Imputation model (8) 0.299 0.016 93.8 0.299 0.020 98.1 −0.603 0.017 91.8 −0.601 0.023 97.5

Scenario 2:
Complete data 0.300 0.012 96.0 0.300 0.012 97.1 −0.600 0.012 94.3 −0.600 0.012 95.5
Complete records 0.300 0.018 93.6 0.300 0.019 94.7 −0.600 0.016 93.8 −0.600 0.018 94.7
Imputation model (6) 0.299 0.015 95.2 0.299 0.016 96.2 −0.594 0.015 92.1 −0.593 0.021 97.9
Imputation model (8) 0.296 0.015 93.2 0.297 0.019 98.1 −0.596 0.015 93.3 −0.596 0.021 97.9

Scenario 3:
Complete data 0.300 0.012 94.4 0.300 0.013 95.5 −0.600 0.012 95.0 −0.600 0.013 95.8
Complete records 0.299 0.018 95.6 0.299 0.020 94.8 −0.599 0.017 94.4 −0.599 0.018 95.2
Imputation model (7) 0.296 0.015 95.1 0.296 0.019 98.5 −0.596 0.016 93.6 −0.595 0.022 98.4
Imputation model (8) 0.296 0.015 94.0 0.296 0.019 97.6 −0.596 0.015 93.0 −0.595 0.022 98.2

Scenario 4:
Complete data 0.300 0.012 94.5 0.300 0.013 95.9 −0.602 0.012 38.0 −0.602 0.039 94.8
Complete records 0.300 0.018 93.8 0.300 0.020 94.9 −0.602 0.017 51.5 −0.602 0.041 94.4
Imputation model (4) 0.293 0.015 88.7 0.296 0.020 97.0 −0.538 0.018 26.3 −0.577 0.035 83.9
Imputation model (5) 0.301 0.015 93.5 0.302 0.019 97.2 −0.559 0.018 38.4 −0.599 0.040 93.7
Imputation model (6) 0.303 0.015 92.8 0.302 0.018 97.4 −0.590 0.016 48.8 −0.588 0.043 95.1
Imputation model (7) 0.296 0.015 92.2 0.297 0.019 97.5 −0.598 0.018 51.4 −0.596 0.043 95.8
Imputation model (8) 0.299 0.015 94.2 0.300 0.019 97.7 −0.604 0.016 49.5 −0.602 0.043 95.4

Scenario 5:
Complete data 0.299 0.012 65.5 0.299 0.023 95.1 −0.599 0.012 39.4 −0.598 0.039 93.4
Complete records 0.299 0.018 77.7 0.299 0.027 94.1 −0.600 0.017 50.0 −0.599 0.041 94.5
Imputation model (4) 0.293 0.015 72.5 0.295 0.026 94.6 −0.535 0.018 25.1 −0.572 0.035 82.7
Imputation model (5) 0.301 0.015 74.4 0.303 0.025 94.2 −0.555 0.018 38.4 −0.594 0.040 93.4
Imputation model (6) 0.303 0.015 74.8 0.300 0.023 94.2 −0.585 0.016 47.6 −0.583 0.042 93.7
Imputation model (7) 0.296 0.015 73.5 0.295 0.027 96.3 −0.595 0.016 49.6 −0.592 0.043 95.4
Imputation model (8) 0.298 0.015 72.4 0.298 0.027 97.0 −0.601 0.015 50.1 −0.599 0.043 96.2

Scenario from
Equation (10)
Complete data 0.300 0.013 50.1 0.301 0.036 93.2 −0.600 0.013 46.6 −0.601 0.036 91.6
Complete records 0.301 0.029 77.3 0.301 0.046 95.0 −0.600 0.018 60.2 −0.600 0.039 91.9
Imputation model (6) 0.284 0.022 66.3 0.282 0.039 91.0 −0.474 0.018 0.3 −0.479 0.037 8.4
Imputation model (7) 0.297 0.021 66.6 0.301 0.043 96.1 −0.603 0.017 56.9 −0.600 0.041 94.3
Imputation model (8) 0.301 0.021 65.9 0.302 0.040 94.0 −0.600 0.017 58.0 −0.600 0.038 93.0

Scenarios 1, 2 and 3: comparison of results from imputation model (4),(6) and (7), respectively (the simplest ones
compatible with the data) and imputation model (8) (the most general). Scenarios 4 & 5: Comparison of all the different
models presented, starting with the simplest one (4) and ending with the most general (8). Scenario from Eqn. (10):
results with data generated from (10); comparison of results from the three most general imputation models (i.e. (6),
(7) & (8)). Results in bold highlight correspond to the correct meta-analysis model and the simplest imputation model
compatible with the data generating mechanism.
SE, standard error; Cov, covariance.
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although, little or no information is gained compared with the complete records analysis. The
likely reason for this is that the data generating mechanism implies (i) a different across-study
distribution of the parameters from the tri-variate normality of (7), and (ii) a very differ-
ent joint distribution of the covariance matrices to the inverse-Wishart used in imputation
model (8).

3.3. A correctly specified data-generating mechanism

To explore this, we simulated the data from a correctly specified data generating mechanism for imputa-
tion models (7) and (8). We used a trivariate normal distribution with an inverse-Wishart distribution for
the study specific covariance, parameterized to be consistent with (9). This gives the following:

⎛⎜⎜⎝
yi,s

X1,i,s
X2,i,s

⎞⎟⎟⎠ ∼ 3

⎛⎜⎜⎝
⎛⎜⎜⎝
𝛽0,s
0
0

⎞⎟⎟⎠ ,Ωs

⎞⎟⎟⎠
Ωs ∼ −1

⎛⎜⎜⎝a,As =
⎛⎜⎜⎝
𝜎1,s 𝜎2,s 𝜎3,s
𝜎2,s 1 0.2
𝜎3,s 0.2 1

⎞⎟⎟⎠
⎞⎟⎟⎠

𝜎3,s =
1.042𝛽2,s + 0.208𝛽1,s

(1.0422 − 0.2082)

𝜎2,s =
𝛽1,s + 0.208𝜎3

1.042

𝜎1,s = 1 +
(
𝜎2,s, 𝜎3,s

)( 1.042 −0.208
−0.208 1.042

)(
𝜎2,s
𝜎3,s

)

(10)

We explored different values for a, the degrees of freedom of the inverse-Wishart distribution:

(1) a = 3, that is, the minimum possible;
(2) a = 200, that is, the number of patients in each study; and
(3) a = 30, that is, the number of clusters.

The conclusions were unchanged by the choice of a, so we report results for a = 30 in the bottom five rows
of Table II. Once again—even with no missing data—fitting a fixed effects meta-analysis in this random
effects setting gives poor results. With missing data, and a random effects meta-analysis, imputation
model (6) now gives poor results for 𝛽2, because it does not allow for a study specific dependency of
y and x2 on x1. However, imputation using (7) gives unbiased results with good coverage and gain in
information for 𝛽1, while imputation using (8), which allows for sharing of information on the covariance
matrix across studies, additionally recovers some information on 𝛽2.

3.4. Simulations with studies of different sizes

So far the simulations have 200 individuals in 30 studies, and a missingness rate for x2 of around 50%.
Thus, there is sufficient information for a reasonable estimate of the covariance matrix within each study.

Here, we allow the study sizes to vary. We still have 30 studies overall, and the same MAR missingness
mechanism, but now

• 10 studies have between 10 and 50 individuals (average sample size ∼ 25);
• 10 studies have between 50 and 100 individuals (average sample size ∼ 75); and
• 10 studies have between 100 and 200 individuals (average sample size ∼ 150).

As a consequence, studies with only 10 individuals may have only four or five complete records, which
are not enough for reasonable estimation of the covariance matrix. In such situations, imputation model
(8) should have a clear advantage over imputation model (7).

Table III shows results with data simulated under scenarios 3, 5 and using the correctly specified
data generating mechanism (10). Here, the complete records analysis struggles because of the small
number of observations from some studies. For the same reason, the results for imputation model (7)
show considerable bias and poor confidence interval coverage.
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Table III. Simulation results with different size studies.

Coefficient 1 Coefficient 2

Fixed effect Random effects Fixed effect Random effects
meta-analysis meta-analysis meta-analysis meta-analysis

Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

Scenario 3:
Complete data 0.300 0.021 93.6 0.300 0.023 95.3 −0.600 0.021 93.3 −0.600 0.023 94.5
Complete records 0.296 0.030 80.9 0.297 0.041 88.4 −0.604 0.028 80.7 −0.600 0.038 89.3
Imputation model (7) 0.287 0.026 91.3 0.284 0.036 97.4 −0.575 0.034 89.4 −0.564 0.049 96.9
Imputation model (8) 0.296 0.028 92.5 0.295 0.041 98.5 −0.590 0.039 92.2 −0.591 0.052 98.8

Scenario 5:
Complete data 0.299 0.021 49.9 0.300 0.036 93.1 −0.599 0.021 53.7 −0.599 0.046 94.3
Complete records 0.297 0.031 75.6 0.297 0.046 92.8 −0.599 0.028 56.5 −0.598 0.055 92.7
Imputation model (7) 0.286 0.027 78.2 0.282 0.043 94.7 −0.571 0.037 66.1 −0.557 0.064 92.2
Imputation model (8) 0.296 0.026 78.8 0.297 0.041 96.0 −0.603 0.029 62.3 −0.601 0.059 95.1

Scenario from Equation (10)
Complete data 0.299 0.021 57.0 0.300 0.044 93.7 −0.599 0.021 55.7 −0.599 0.043 92.5
Complete records 0.301 0.048 75.5 0.301 0.073 94.4 −0.582 0.029 64.8 −0.595 0.053 93.4
Imputation model (7) 0.208 0.029 24.9 0.202 0.051 49.9 −0.313 0.042 0.0 −0.293 0.053 0.0
Imputation model (8) 0.296 0.033 71.4 0.297 0.053 94.9 −0.595 0.029 70.3 −0.594 0.049 93.0

Comparison of the results from imputation models (7) and (8) when data are generated (i) using scenarios 3–5 from
Table I and (ii) using data generating mechanism (10). Results in bold highlight the correct meta-analysis model and
compatible imputation model (7).
SE, standard error; Cov, covariance.

However, imputation model (8) gives results that are essentially unbiased, and with good coverage both
when the distribution of study specific covariance matrices is not inverse-Wishart (scenarios 3 and 5) and
when it is data generated using (10). Information is recovered for the coefficient of the fully observed
covariate in all cases and for the coefficient of the partially observed variable when the data generation
model is the same as the imputation model.

3.5. Simulations with systematically missing variables

Here, we again simulate data from 30 studies, each with 200 patients. We use scenarios 1–5 shown in
Table I, and then the correctly specified scenario, (10). We make values of x2 missing using the same MAR
mechanism as before, so about 50% are missing. In addition, for each simulated dataset, we completely
remove x2 from two randomly selected studies.

In this setting, we do not present the complete records analysis, as it excludes studies with no data on
x2. For imputation in this setting, we need to be able to draw study specific parameter values to impute
x2 when it is systematically missing. For scenario 1, we can do this using (4); for the other scenarios, we
need (8). Table IV shows the results.

Recall that scenarios 1–5 use a different data generation model from the imputation model. For sce-
narios 1–3, where the fixed effects model is correct, we see minimal bias and good coverage if the fixed
effects model is used, and mildly conservative inference if the random effects model is used. For scenar-
ios 4–5, using the fixed effects model when the random effects model is correct results in poor coverage,
even with no missing data. Using the correct analysis model appears to give a little bias, and confidence
intervals coverage is always too high.

With data simulated from the correctly specified data generation model, (10), we see no bias, correct
coverage and minimal loss of information compared with the complete records analysis.

3.6. Graphical representation of the main results

We are aware that the amount of information included in Tables II–IV is huge. Therefore, in order to pro-
vide the reader with a more gentle introduction to the main findings of the study, we decided to include
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Table IV. Simulations results when two randomly chosen studies are completely missing x2, and for others
50% of x2 values are MAR. Data generated under scenarios 1–5 and using (10). Results in bold highlight the
correct meta-analysis model and compatible imputation model.

Coefficient 1 Coefficient 2

Fixed effect Random effects Fixed effect Random effects
meta-analysis meta-analysis meta-analysis meta-analysis

Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

Scenario 1:
Complete data 0.300 0.013 94.9 0.300 0.014 95.7 −0.600 0.013 95.0 −0.600 0.014 95.8
Imputation model (4) 0.300 0.016 94.2 0.300 0.017 95.5 −0.600 0.018 93.8 −0.600 0.019 94.6

Scenario 2:
Complete data 0.300 0.012 96.0 0.300 0.012 97.1 −0.600 0.012 94.3 −0.600 0.012 95.5
Imputation model (8) 0.296 0.021 96.0 0.297 0.026 99.6 −0.562 0.055 95.7 −0.589 0.041 99.8

Scenario 3:
Complete data 0.300 0.012 94.4 0.300 0.013 95.5 −0.600 0.012 95.0 −0.600 0.013 95.8
Imputation model (8) 0.296 0.022 96.5 0.297 0.028 99.5 −0.565 0.054 96.6 −0.588 0.042 99.6

Scenario 4:
Complete data 0.300 0.012 94.5 0.300 0.013 95.9 −0.602 0.012 38.0 −0.602 0.039 94.8
Imputation model (8) 0.277 0.033 99.0 0.297 0.038 99.6 −0.569 0.059 81.3 −0.592 0.064 97.6

Scenario 5:
Complete data 0.299 0.012 65.5 0.299 0.023 95.1 −0.599 0.012 39.4 −0.598 0.039 93.4
Imputation model (8) 0.297 0.021 84.1 0.297 0.033 99.0 −0.566 0.056 81.5 −0.589 0.055 97.2

Scenario (10)
Complete data 0.302 0.013 48.7 0.301 0.036 95.3 −0.602 0.013 49.7 −0.602 0.036 93.8
Imputation model (8) 0.301 0.015 58.0 0.301 0.037 95.6 −0.603 0.014 55.6 −0.604 0.037 94.4

Results in bold highlight the correct meta-analysis model and compatible imputation model.
SE, standard error; Cov, covariance.

a graphical representation of the main results, in Figure 1. In the plots in the first column, we see results
from one of the simulation scenarios in which the data generating mechanism does not match the imputa-
tion model, that is, scenario 3, while, in the second column, data are generated through (10), matching the
imputation model used. Using the correctly specified meta-analysis model, that is, fixed effect IVW for
scenario 3 and random effects IVW for scenario (10), we present the results of the estimation of 𝛽2 with
complete data, complete records analysis and handling missing data with joint modelling–MI with two
imputation models: the simplest possible model compatible with the data generating mechanism in each
scenario and model (8), that is, the most general one using random study-specific covariance matrices.
On the x axis, we put mean and average confidence interval for bias, while on the y axis, we put cover-
age level. We can see that, while in the simple settings of Section 3.1, where data are only sporadically
missing and all the studies are equally sized, all the four methods seem to work nicely, when we have
studies with only few observations like in Section 3.4 or even systematically missing variables like in
Section 3.5, only MI with imputation model (8) is always able to get good coverage levels, within 5% of
the nominal 95%, and mean estimates similar to the ones obtained with the complete data. This is because
with this model, we can borrow information from bigger studies while still allowing for heterogeneity in
the covariance matrices.

We can also see how, in presence of systematically missing variables, when the study-specific covari-
ance matrices are actually random draws from an inverse-Wishart distribution in the data generating
mechanism, like in Scenario (10), we can reach average confidence intervals really close to the ones
obtained with complete data, while when the covariance matrices are distributed like in scenario 3,
confidence intervals appear much larger, but the mean estimate is still not much biased.
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Figure 1. Main results from simulation study: Comparison of mean, average confidence interval and coverage
level after 1000 simulations with Complete Data (—), Complete Records (– – –) and handling missing values with
joint modelling–multiple imputation with the simplest compatible imputation model (– - – -) and joint modelling–
multiple imputation with the most general imputation model (8) (- - - -). For analyses related to scenario 3, the
meta-analysis model used was fixed effect Inverse Variance Weighting while for scenario generated through (10),
random-effects inverse variance weight with DerSimonian and Laird estimate of between-study heterogeneity.

3.7. Summary of findings from simulation studies

Drawing together the results from the simulation studies, we conclude the following

Choice of meta-analysis model
Even without missing data, using a fixed effects model when random effects are present leads to
underestimation of the standard error and under-coverage of the confidence intervals.

Studies of equal sizes
When a fixed effects model is valid—and used—imputation using the most general model (8) gives
comparable results with imputing using the simplest compatible model.

When a fixed effects model is valid, but a random effects model is used, the most general imputation
model (8) leads to some loss of efficiency relative to the simplest compatible model.
In applications, we are most likely to be faced with study specific correlation matrices. In this case,
unless we use imputation models that allow this, that is, (7) or (8), we may get bias and poor coverage,
especially for the coefficients of variables with a lot of missing data. When the across-study distribution
of covariance matrices is close to inverse-Wishart, then we gain information on both parameters with
(8). When it is not, bias remains negligible and coverage good, but there is little gain in information
compared with a complete records analysis.

Studies with unequal sample sizes

Here, sharing information on the covariance structure across studies using (8) improved markedly on the
complete records analysis, with more information recovered the closer the data generation mechanism
is to the imputation model.
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Table V. INDANA analysis: estimated effect of blood pressure reducing treatment (mmHg) on diastolic blood
pressure 1 year after randomization.

One-stage heteroscedastic One-stage heteroscedastic Two-stage Two-stage
regression, fixed regression, random fixed-effect random-effect

treatment treatment meta-analysis meta-analysis
estimate (S.E.) estimate (S.E.) estimate (S.E.) estimate (S.E.)

Complete records −5.69 (0.10) −6.65 (0.60) −5.70 (0.10) −6.72 (0.62)

Multiple imputation:
common covariance −5.69 (0.09) −6.38 (0.49) −5.70 (0.09) −6.43 (0.50)
matrix

Multiple imputation:
random covariance −5.65 (0.10) −6.27 (0.46) −5.66 (0.10) −6.38 (0.48)
matrices

SE, standard error.

Studies with systematically missing variables

Imputation using (8) is the only possible general approach in this setting. It does not introduce practically
important bias in any of the scenarios considered, although it was a little conservative in the random
effects setting when the data generation mechanism was very different to the imputation model. The
closer the data generation mechanism is to the imputation model, the greater the gain in information
through multiple imputation, with excellent results when they are the same.

Overall
In applications, we therefore advocate (8), as the simulations suggest the worst that can happen is that
inferences are mildly conservative.

4. Application to the INDANA meta-analysis

Here, we analyse data from INDANA, an IPD meta-analysis set up to investigate the overall effect
of an anti-hypertensive drug treatment on patients at high cardiovascular risk [18]. The data come ten
randomized studies, with 53 271 patients altogether.

Our illustrative analysis is a linear regression of diastolic blood pressure 1 year after randomization
on treatment, adjusting for sex and baseline age, cholesterol and diastolic blood pressure. Table SI in
the supporting information summarizes the missingness pattern; only age and sex are fully observed,
with other variables sporadically missing. Further, in one study, there is no diastolic blood pressure or
cholesterol data.

For our substantive model, we considered both 1-step and 2-step fixed and random effects meta-
analysis (both models allowed for different study specific residual variances). We compared a complete
records analysis with multiple imputation using a common covariance matrix and multiple imputation
using random study-specific covariance matrices, that is (8). The imputation models had all the partially
observed variables as responses, and the completely observed ones as covariates. We used 15 imputations,
with a burn in of 1000 iterations and 500 iterations between each imputation.

Table V shows the results for the treatment effect. One-stage and two-stage fixed effects analyses give
similar results, as do one and two-stage random effects analyses. There is considerable heterogeneity
between studies, so we prefer a random effects analysis. For the same reason, we also prefer MI using
(8). Focusing on the two-stage random effects analysis, the results show a practically useful gain in
information over complete records with MI using (8), from −6.72∕.62 = −10.8 to −6.38∕.48 = −13.3.

5. Discussion

This work was motivated by a wish to extend multiple imputation for IPD meta-analysis to situations
where studies have very different proportions of missing data on some variables, and for some studies,
certain variables may have not been collected. In this context, we proposed using joint-modelling mul-
tiple imputation with random study specific covariance matrices. The motivation is that this will allow
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appropriate borrowing of information across studies: appropriate, because it reflects the heterogeneity
among studies.

The consequences of marked differences between the data generating model and imputation model in
the across-study distribution of the covariance matrices were investigated in the first set of simulations
in Section 3.1, scenarios 1–5. These scenarios were introduced and considered by [7], who found good
results with within-study multiple imputation.

In scenarios 1–3, we found that our most general imputation model, (8), did not introduce bias and
(for the correct fixed effects model) gave good coverage and gained some information over a complete
records analysis. In scenarios 4 & 5, there was minimal bias, but because the across-study distribution of
the covariance matrices is far from inverse-Wishart, little was gained over a complete records analysis.
However, when the across-study distribution of covariance matrices is close to inverse-Wishart, then we
gained information on both parameters. In applications, we are typically missing data on several variables;
in such situations, we expect MI to recover more information related to a complete records analysis.

We drew similar conclusions (Section 3.7) from the more challenging settings—which cannot be han-
dled by within study imputation—considered in Sections 3.4 and 3.5. In particular, our results suggest
our approach can be used to impute completely missing variables in some studies, successfully address-
ing some of the issues raised by [11]. Based on our results, we recommend our approach, implemented
on the R package jomo, for multiple imputation of IPD meta-analysis in scenarios like that illustrated in
Section 4 with the INDANA data. These data have missing values on several variables, some of which
are not observed at all in some studies. Using a random effects analysis, and MI imputation using (8)
assuming MAR, we were able to recover an encouraging amount of information and (judging by our
simulation results) remove some bias.

In applications, we advocate including variables with no (or few) missing values as covariates in the
imputation model. Conditioning on them avoids the need to specify a joint model for them; in other
words, it avoids a possible source of model mis-specification. If appropriate, these variables can be given
random coefficients to reflect study specific variability in their associations with the other variables.

Our simulation study used two stage meta-analysis models, which are the most common choice among
meta-analysts. However, we see no reason why our simulation results should not also apply to one-stage
substantive models, which may also be more efficient.

In multilevel/hierarchical modelling, a multivariate normal distribution is typically taken for the
random effects, However, if contextually appropriate, alternative distributions (e.g. heavier tailed or
categorical distributions) may be implemented in this framework.

Likewise, using the multivariate normal model influenced our choice of the inverse-Wishart distribution
for the across-studies covariance matrices (as it is the conjugate for the multivariate normal covariance
matrix). It is also computationally relatively straightforward. If desired, alternative distributions could
be implemented in this framework. We are uncertain, although, about the practical gains of doing this.
Throughout, we chose an identity matrix with minimum scale parameter as the inverse-Wishart prior for
distribution of the study specific covariance matrices. While this has been criticized in the context of
random effects modelling (e.g. [19]), in our setting, the simulations results suggest it has minimal impact.

Because IPD datasets may be large, the first author has worked hard to develop computationally effi-
cient software. The resulting R package, jomo was used for all the imputations carried out for this paper,
and is freely downloadable fromCRAN. This software also allows for partially observed discrete variables,
using the latent normal model proposed by [8].

As our approach derives from a proper joint model, fitted by MCMC, it does not entail on any problem-
specific adaptations. Further, it naturally extends to settings with more levels in the hierarchy, as well as
settings where we have study specific variables defined at the second and higher levels of the hierarchy.
Further, the approach described in this paper dovetails with that proposed by [20] for consistent handling
non-linear relationships and interactions in the imputation process.

In applications, we need to remember that all of the techniques described so far assume that data are
MAR, and therefore, a proper sensitivity analysis to different assumptions should be considered ([21]
and [22], ch. 4).

In conclusion, the main reason for MI’s growing popularity for handling missing data is its flexibil-
ity and practicality. In the case of imputing for IPD meta-analysis, we have described and evaluated a
joint-model approach with random study-specific covariance matrices. This extends current approaches,
allowing multiple imputation when some variables have a substantial proportion of missing values, and/or
are not collected in some studies. Our simulation evaluation of this approach and its application to real
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data show promising results, and we hope the jomo software implementing it will be a useful addition to
the meta-analysts tool-kit.

Appendix A: MCMC algorithm for random study-specific covariance matrices

In this appendix, we outline the MCMC algorithm for fitting random level 1 covariance matrices
introduced by [10], correcting a couple of minor errors.

Under this model, the level 1 precision matrices for each level 2 unit are drawn from a Wishart
distribution, and thus, the inverse of study-specific level 1 covariance matrices Ω1,j have marginal
distribution:

(Ω1,j)−1 ∼ W(a,A)

where a is the degrees of freedom and A the scale matrix.
Now, we consider the general algorithm for MCMC multilevel imputation (for example, [23],

[4, Section 9.2]) and the differences introduced into this algorithm by allowing for random level 1 covari-
ance matrices. Firstly, the common covariance matrix Ω1 needs to be substituted in the algorithm with
the proper study-specific Ω1,j. Secondly, we have two more parameters to deal with, a and A. So we need
to specify priors for these parameters; an obvious choice is:

a ∼ 𝜒2
𝜂

A−1 ∼ W(𝛾,Γ)

where 𝜂, 𝛾 and Γ need to be chosen by the analyst. Following Yucel, we choose in our analyses to set
𝜂 = p1, where p1 = dim(Ω1,j), while for 𝛾 and Γ, we choose the least informative values possible, that is
𝛾 = p1 and Γ = I.

Then, we need to draw a new value for A−1. We do know that the conditional distribution of A−1 given
all the Ω1,j and a is Wishart:

A−1 ∼ W
⎛⎜⎜⎝𝛾 + aJ,

(
Γ−1 +

∑
j

Ω−1
1,j

)−1⎞⎟⎟⎠
where J represents the number of level 2 units. Unfortunately, we do not know the closed form of the
distribution of a given Ω1,j, and therefore, we are forced to use a Metropolis Hastings step in order to
draw the new value of a at each step of the MCMC.

We know that the density of a is proportional to

f (a) ∝ f1(a)

(
J∏

j=1

f2,j(a)

)

where f1(a) is the prior distribution for a, that is, 𝜒2
𝜂
, and f2,j(a) is the Wishart distribution for the jth

precision matrix Ω−1
1,j as a function of a. Because a has a skewed distribution, Yucel proposed using a

transformed variable u such that:

u = log(a + p1)

fU(u) = f
(
exp(u) − p1

) ||||𝜕a
𝜕u

||||
We then choose as proposal density a t4 distribution centred at um, that is, the mode of fU(u), that we

calculate using Newton–Raphson search. The density of such distribution is

h(u) ∝
(

1 +
(u − um)2

4𝜆2

)− 5
2
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where we choose 𝜆 in order to match the curvature of fU:

𝜆 =
√√√√− 5

4 𝜕2fU (u)
𝜕2

u

||u=um

Then, our Metropolis–Hastings sampler accepts a proposed u∗ with probability:

min

(
1,

f (u∗)h(u)
f (u)h(u∗)

)
.

Lastly, given the new draws of a and A, we update the J covariance matrices from the correspondent
distributions:

Ω−1
1,j ∼ W

(
a + Ij,W

−1
j

)
,

where:

Wj = A−1 +
I∑

i=1

(
𝐘(1)

i,j − 𝐗(1)
i,j 𝛽

(1) − 𝐙(1)
i,j 𝐮

(1)
j

)T (
𝐘(1)

i,j − 𝐗(1)
i,j 𝛽

(1) − 𝐙(1)
i,j 𝐮

(1)
j

)
.

Where Ij is the number of level 1 units within each level 2 cluster, 𝐘(1)
i,j is the vector of the outcomes for

subject i in cluster j, 𝐗(1)
i,j and 𝐙(1)

i,j are the covariates for the fixed and random effects and 𝜷 (1) and 𝐮(1)j are
the vectors of fixed and random effects coefficients.
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