572 research outputs found
Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils
Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil
Rich Situated Attitudes
We outline a novel theory of natural language meaning, Rich
Situated Semantics [RSS], on which the content of sentential utterances
is semantically rich and informationally situated. In virtue of its situatedness,
an utterance’s rich situated content varies with the informational
situation of the cognitive agent interpreting the utterance. In virtue of its
richness, this content contains information beyond the utterance’s lexically
encoded information. The agent-dependence of rich situated content
solves a number of problems in semantics and the philosophy of language
(cf. [14, 20, 25]). In particular, since RSS varies the granularity of utterance
contents with the interpreting agent’s informational situation, it
solves the problem of finding suitably fine- or coarse-grained objects for
the content of propositional attitudes. In virtue of this variation, a layman
will reason with more propositions than an expert
Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution
We present a substantial upgrade of the Met Office system for the probabilistic attribution of extreme weather and climate events with higher horizontal and vertical resolution (60 km mid-latitudes and 85 vertical levels), the latest Hadley Centre atmospheric and land model (ENDGame dynamics with GA6.0 science and JULES at GL6.0) as well as an updated forcings set. A new set of experiments designed for the evaluation and implementation of an operational attribution service are described which consist of pairs of multi-decadal stochastic physics ensembles continued on a season by season basis by large ensembles that are able to sample extreme at- mospheric states possible in the recent past. Diagnostics from these experiments form the HadGEM3-A contribution to the international Climate of the 20th Century Plus (C20Cþ) project and were analysed under the European Climate and Weather Events: Interpretation and Attribution (EUCLEIA) event attribution project as well as contributing to the Climate Science for Service Partnership (CSSP)-China programme. After discussing the framing issues surrounding questions that can be asked with our system we construct a novel approach to the evaluation of atmosphere-only ensembles intended for event attribution, in the process highlighting and clarifying the distinction between hindcast skill and model performance. A framework based around assessing model representation of predictable components and ensuring exchangeability of model and real world statistics leads to a form of detection and attribution to boundary condition forcing as a means of quantifying one degree of freedom of potential model error and allowing for the bias correction of event probabilities and resulting probability ratios. This method is then applied systematically across the globe to assess contributions from anthropogenic influence and specific boundary conditions to the changing probability of observed and record seasonal mean temperatures of four recent 3-month seasons from March 2016–February 2017
Perspectieven voor hoogveenherstel in Nederland : samenvatting onderzoek en handleiding hoogveenherstel 1998-2010
Het hoogveenareaal in Nederland is door ontginning, turfwinning, boekweitbrandcultuur en verdroging sterk gereduceerd. De water- en nutriëntenhuishouding van de hoogvenen zijn sterk verstoord door deze aantastingen en bovendien door de neerslag van atmosferisch stikstof (N). Verder is door deze aantastingen de variatie in terreincondities die aanwezig is in intacte hoogveenlandschappen, met name gradiënten van de zure, mineraalarme hoogveenkern naar de gebufferde, mineraalrijkere omgeving, afgenomen. Herstelmaatregelen in de hoogveenrestanten hadden wisselend succes: soms herstelden of ontwikkelden zich vegetaties met bultvormende veenmossen, meestal ontstond een drijvende laag Waterveenmos (Sphagnum cuspidatum) of een zure waterplas. Verder bleef Pijpenstrootje (Molinia caerulea) over grote oppervlakten de vegetatie domineren en vestigden zich Berken (Betula spec.). In het kader van het kennisnetwerk ‘Ontwikkeling en Beheer Natuurkwaliteit’ (OBN) is onderzoek gedaan naar de perspectieven voor hoogveenherstel in Nederland. Twee vragen stonden daarbij centraal: 1. Is hoogveenherstel mogelijk bij de huidige hoge atmosferische N-depositie? 2. Onder welke voorwaarden is succesvol herstel van de karakteristieke flora en fauna mogelijk? De belangrijkste conclusies uit dit onderzoek worden in dit rapport beschreven
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
On the semantics and logic of declaratives and interrogatives
In many natural languages, there are clear syntactic and/or intonational differences between declarative sentences, which are primarily used to provide information, and interrogative sentences, which are primarily used to request information. Most logical frameworks restrict their attention to the former. Those that are concerned with both usually assume a logical language that makes a clear syntactic distinction between declaratives and interrogatives, and usually assign different types of semantic values to these two types of sentences. A different approach has been taken in recent work on inquisitive semantics. This approach does not take the basic syntactic distinction between declaratives and interrogatives as its starting point, but rather a new notion of meaning that captures both informative and inquisitive content in an integrated way. The standard way to treat the logical connectives in this approach is to associate them with the basic algebraic operations on these new types of meanings. For instance, conjunction and disjunction are treated as meet and join operators, just as in classical logic. This gives rise to a hybrid system, where sentences can be both informative and inquisitive at the same time, and there is no clearcut division between declaratives and interrogatives. It may seem that these two general approaches in the existing literature are quite incompatible. The main aim of this paper is to show that this is not the case. We develop an inquisitive semantics for a logical language that has a clearcut division between declaratives and interrogatives. We show that this language coincides in expressive power with the hybrid language that is standardly assumed in inquisitive semantics, we establish a sound and complete axiomatization for the associated logic, and we consider a natural enrichment of the system with presuppositional interrogatives
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
Natuurverkenning 2010-2040 : visies op de ontwikkeling van natuur en landschap
De Natuurverkenning verschijnt in een turbulente tijd waarin natuur en landschap sterk gepolitiseerd zijn. Met de verkenning wil het PBL een bijdrage leveren aan het structureren van het debat over de vernieuwing van het langetermijnbeleid en een impuls geven aan de politieke afwegingen. Nieuw is het gebruik van normatieve toekomstscenario’s als hulpmiddel om de achterliggende drijfveren voor natuurbeleid te verhelderen
- …
