188 research outputs found

    Active Brownian particles with velocity-alignment and active fluctuations

    Full text link
    We consider a model of active Brownian particles with velocity-alignment in two spatial dimensions with passive and active fluctuations. Hereby, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed as independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account for example for thermal fluctuations. We derive a macroscopic description of the active Brownian particle gas with velocity-alignment interaction. Hereby, we start from the individual based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here in particular on the different impact of active and passive fluctuations on the onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuation lead to an earlier breakdown of collective motion and to emergence of a new bistable regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic

    Dissociation and ionization of small molecules steered by external noise

    Full text link
    We show that ionization and dissociation can be influenced separately in a molecule with appropriate external noise. Specifically we investigate the hydrogen molecular ion under a stochastic force quantum mechanically beyond the Born-Oppenheimer approximation. We find that up to 30% of dissociation without ionization can be achieved by suitably tuning the forcing parameters.Comment: 13 pages, 6 figure

    Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?

    Full text link
    A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in three cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that under these conditions the singularity of the potential does not cause any difficulties and the Coulomb interaction can be treated as any other non-singular potential. Moreover, by virtue of our three-dimensional calculation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS

    Coulomb blockade effects in driven electron transport

    Full text link
    We study numerically the influence of strong Coulomb repulsion on the current through molecular wires that are driven by external electromagnetic fields. The molecule is described by a tight-binding model whose first and last site is coupled to a respective lead. The leads are eliminated within a perturbation theory yielding a master equation for the wire. The decomposition into a Floquet basis enables an efficient treatment of the driving field. For the electronic excitations in bridged molecular wires, we find that strong Coulomb repulsion significantly sharpens resonance peaks which broaden again with increasing temperature. By contrast, Coulomb blockade has only a small influence on effects like non-adiabatic electron pumping and coherent current suppression.Comment: 9 pages, 7 figures. Added a plot for temperature dependence of resonance peaks. Published versio

    Chemical and physical small-scale structure in a pre-stellar core

    Full text link
    We present a comparative study of several molecular lines and of the dust contiunuum at 1.2mm in a pre-stellar core that is embedded in the Galactic cirrus cloud MCLD123.5+24.9. Previous studies found that the core is gravitationally stable and shows signs of inward motion. Using the Owens Valley (OVRO) and Plateau de Bure (PdB) interferometers we obtained high-angular resolution maps of the core in the carbon monosulfide CS 2-1 and the cyanoacetylene HC3N 10-9 transitions. Together with CS 5-4, C34S 3-2, and bolometer data obtained with the IRAM 30m telescope, we analyse the excitation conditions and the structural properties of the cloud. On the one hand, the new CS 2-1 observations reveal significant substructure on a scale of about 7", i.e., the beam size, corresponding to about 1050 AU at an adopted distance of 150pc. On the other hand, the interferometric observations in the HC3N 10-9 transition shows just one single well resolved clump in the inner part of the core. This core is well described by an intensity profile following from a centrally peaked volume density distribution. We find no evidence for depletion of CS onto dust grains. The inward motion seen in the CS 2-1 occurs one-sided from the middle of the filamentary cloud towards the HC3N core.Comment: 8 pages, 8 figures, accepted by A&

    Spin correlations in spin blockade

    Get PDF
    We investigate spin currents and spin-current correlations for double quantum dots in the spin blockade regime. By analysing the time evolution of the density matrix, we obtain the spin resolved currents and derive from a generating function an expression for the fluctuations and correlations. Both the charge current and the spin current turn out to be generally super-Poissonian. Moreover, we study the influence of ac fields acting upon the transported electrons. In particular, we focus on fields that cause spin rotation or photon-assisted tunnelling.Comment: 14 pages, 9 figure

    Semiclassical description of multiphoton processes

    Get PDF
    We analyze strong field atomic dynamics semiclassically, based on a full time-dependent description with the Hermann-Kluk propagator. From the properties of the exact classical trajectories, in particular the accumulation of action in time, the prominent features of above threshold ionization (ATI) and higher harmonic generation (HHG) are proven to be interference phenomena. They are reproduced quantitatively in the semiclassical approximation. Moreover, the behavior of the action of the classical trajectories supports the so called strong field approximation which has been devised and postulated for strong field dynamics.Comment: 10 pages, 11 figure

    Iodine monoxide in the Western Pacific marine boundary layer

    Get PDF
    A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices
    corecore