We consider a model of active Brownian particles with velocity-alignment in
two spatial dimensions with passive and active fluctuations. Hereby, active
fluctuations refers to purely non-equilibrium stochastic forces correlated with
the heading of an individual active particle. In the simplest case studied
here, they are assumed as independent stochastic forces parallel (speed noise)
and perpendicular (angular noise) to the velocity of the particle. On the other
hand, passive fluctuations are defined by a noise vector independent of the
direction of motion of a particle, and may account for example for thermal
fluctuations.
We derive a macroscopic description of the active Brownian particle gas with
velocity-alignment interaction. Hereby, we start from the individual based
description in terms of stochastic differential equations (Langevin equations)
and derive equations of motion for the coarse grained kinetic variables
(density, velocity and temperature) via a moment expansion of the corresponding
probability density function.
We focus here in particular on the different impact of active and passive
fluctuations on the onset of collective motion and show how active fluctuations
in the active Brownian dynamics can change the phase-transition behaviour of
the system. In particular, we show that active angular fluctuation lead to an
earlier breakdown of collective motion and to emergence of a new bistable
regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic