220 research outputs found

    Horizontal gene transfer contributes to plant evolution : the case of Agrobacterium T-DNAs

    Get PDF
    Horizontal gene transfer (HGT) can be defined as the acquisition of genetic material from another organism without being its offspring. HGT is common in the microbial world including archaea and bacteria, where HGT mechanisms are widely understood and recognized as an important force in evolution. In eukaryotes, HGT now appears to occur more frequently than originally thought. Many studies are currently detecting novel HGT events among distinct lineages using next-generation sequencing. Most examples to date include gene transfers from bacterial donors to recipient organisms including fungi, plants, and animals. In plants, one well-studied example of HGT is the transfer of the tumor-inducing genes (T-DNAs) from some Agrobacterium species into their host plant genomes. Evidence of T-DNAs from Agrobacterium spp. into plant genomes, and their subsequent maintenance in the germline, has been reported in Nicotiana, Linaria and, more recently, in Ipomoea species. The transferred genes do not produce the usual disease phenotype, and appear to have a role in evolution of these plants. In this paper, we review previous reported cases of HGT from Agrobacterium, including the transfer of T-DNA regions from Agrobacterium spp. to the sweetpotato [ Ipomoea batatas (L.) Lam.] genome which is, to date, the sole documented example of a naturally-occurring incidence of HGT from Agrobacterium to a domesticated crop plant. We also discuss the possible evolutionary impact of T-DNA acquisition on plants

    The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (genus Ipomoea) genome is not confined to hexaploid sweetpotato

    Get PDF
    The discovery of the insertion of IbT-DNA1 and IbT-DNA2 into the cultivated (hexaploid) sweetpotato [Ipomoea batatas (L.) Lam.] genome constitutes a clear example of an ancient event of Horizontal Gene Transfer (HGT). However, it remains unknown whether the acquisition of both IbT-DNAs by the cultivated sweetpotato occurred before or after its speciation. Therefore, this study aims to evaluate the presence of IbT-DNAs in the genomes of sweetpotato's wild relatives belonging to the taxonomic group series Batatas. Both IbT-DNA1 and IbT-DNA2 were found in tetraploid I. batatas (L.) Lam. and had highly similar sequences and at the same locus to those found in the cultivated sweetpotato. Moreover, IbT-DNA1 was also found in I. cordatotriloba and I. tenuissima while IbT-DNA2 was detected in I. trifida. This demonstrates that genome integrated IbT-DNAs are not restricted to the cultivated sweetpotato but are also present in tetraploid I. batatas and other related species

    Mutant and chimeric recobinant plasminogen activatorsproduction in eukaryotic cellsand preliminary characterization

    Get PDF
    Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another

    The F-actin cytoskeleton in syncytia from non-clonal progenitor cells

    Get PDF
    The actin cytoskeleton of plant syncytia (a multinucleate cell arising through fusion) is poorly known: to date, there have only been reports about F-actin organization in plant syncytia induced by parasitic nematodes. To broaden knowledge regarding this issue, we analyzed F-actin organization in special heterokaryotic Utricularia syncytia, which arise from maternal sporophytic tissues and endosperm haustoria. In contrast to plant syncytia induced by parasitic nematodes, the syncytia of Utricularia have an extensive F-actin network. Abundant F-actin cytoskeleton occurs both in the region where cell walls are digested and the protoplast of nutritive tissue cells fuse with the syncytium and also near a giant amoeboid in the shape nuclei in the central part of the syncytium. An explanation for the presence of an extensive F-actin network and especially F-actin bundles in the syncytia is probably that it is involved in the movement of nuclei and other organelles and also the transport of nutrients in these physiological activity organs which are necessary for the development of embryos in these unique carnivorous plants. We observed that in Utricularia nutritive tissue cells, actin forms a randomly arranged network of F-actin, and later in syncytium, two patterns of F-actin were observed, one characteristic for nutritive cells and second—actin bundles—characteristic for haustoria and suspensors, thus syncytia inherit their F-actin patterns from their progenitors

    Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.</p> <p>Results</p> <p>We examined the expression of soybean (<it>Glycine max</it>) genes in galls formed in roots by the root-knot nematode, <it>Meloidogyne incognita</it>, 12 days and 10 weeks after infection to understand the effects of infection of roots by <it>M. incognita</it>. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 <it>G. max </it>probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.</p> <p>Conclusions</p> <p>A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between <it>M. incognita </it>and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.</p

    (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula

    Get PDF
    Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes

    Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra vulgaris

    Get PDF
    Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process

    Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    Get PDF
    Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals
    corecore