851 research outputs found
Risk Factors Associated with Mild Cognitive Impairment ΓΒ°mong Apparently Healthy People and the Role of MicroRNAs
BACKGROUND: Mild cognitive impairment (MCI) is a stage between the expected cognitive decline of normal ageing and the serious decline of dementia.
AIM: To identify risk factors and role of miRNAs associated with mild cognitive impairment (MCI) among employees.
SUBJECTS AND METHOD: A cross-sectional study was carried out on 186 employees aged between 40 and 65 years. Cognitive function was evaluated using ACEIII, MoCA, and Quick cognitive tests. Medical history and lifestyle were assessed. Family 132 & 134 miRNA expressions were assessed by real-time PCR.
RESULTS: MCI was detected among 14 / 186 (7.5%). miRNA 132 expression was the only significant miRNAs to detect MCI with low sensitivity and specificity (70%). The logistic analysis revealed that higher miRNA132 expressions, low monthly intake of; vegetables, unroasted nuts, low education and higher ALT levels were predicting factors for MCI with AOR 1.1 (1.01-3.3), 1.2 (1.04-1.43), 0.8 (0.8-0.98), 2.7 (1.9-7.4) and 1.6 (1.1-2.3) respectively.
CONCLUSION: MiRNAs expression showed low sensitivity and specificity in detecting MCI; only miRNA 132 might be used. Several modifiable factors seem to reduce the risk of MCI
Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen
MicroRNAs are small non-coding RNAs that modulate gene expression at post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have shown that a limited number of mammalian microRNAs are also involved in anti-viral defense. In this study, the analysis of the hepatitis B virus (HBV) genome by the computer program MiRanda led to the identification of seven sites that are potential targets for human liver microRNAs. These sites were found to be clustered in a 995-bp segment within the viral polymerase ORF and the overlapping surface antigen ORF, and conserved among the most common HBV subtypes. The HBV genomic targets were then subjected to a validation test based on cultured hepatic cells (HepG2, HuH-7 and PLC/PRF/5) and luciferase reporter genes. In this test, one of the selected microRNAs, hsa-miR-125a-5p, was found to interact with the viral sequence and to suppress the reporter activity markedly. The microRNA was then shown to interfere with the viral translation, down-regulating the expression of the surface antigen. Overall, these results support the emerging concept that some mammalian microRNAs play a role in virus-host interaction. Furthermore, they provide the basis for the development of new strategies for anti-HBV intervention
Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape
One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection
The c-Myc Target Glycoprotein1bΞ± Links Cytokinesis Failure to Oncogenic Signal Transduction Pathways in Cultured Human Cells
An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbΞ±), a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbΞ± in a p53-deficient background. GpIbΞ± was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbΞ±
Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma
Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events
Single-Cell Analysis of Ploidy and Centrosomes Underscores the Peculiarity of Normal Hepatocytes
Polyploidization is the most well recognized feature of the liver. Yet, a quantitative and behavioral analysis of centrosomes and DNA content in normal hepatocytes has been limited by the technical challenges of methods available. By using a novel approach employing FISH for chromosomes 18, X and Y we provide, for the first time, a detailed analysis of DNA copies during physiological development in the liver at single cell level. We demonstrate that aneuploidy and unbalanced DNA content in binucleated hepatocytes are common features in normal adult liver. Despite the common belief that hepatocytes contain 1, 2 or no more than 4 centrosomes, our double staining for centrosome associated proteins reveals extranumerary centrosomes in a high percentage of cells as early as 15 days of age. We show that in murine liver the period between 15 days and 1.5 months marks the transition from a prevalence of mononucleated cells to up to 75% of binucleated cells. Our data demonstrate that this timing correlates with a switch in centrosomes number. At 15 days the expected 1 or 2 centrosomes converge with several hepatocytes that contain 3 centrosomes; at 1.5 months the percentage of cells with 3 centrosomes decreases concomitantly with the increase of cells with more than 4 centrosomes. Our analysis shows that the extranumerary centrosomes emerge in concomitance with the process of binucleation and polyploidization and maintain Ξ±-tubulin nucleation activity. Finally, by integrating interphase FISH and immunofluorescent approaches, we detected an imbalance between centrosome number and DNA content in liver cells that deviates from the equilibrium expected in normal cells. We speculate that these unique features are relevant to the peculiar biological function of liver cells which are continuously challenged by stress, a condition that could predispose to genomic instability
Mosaicism for combined tetrasomy of chromosomes 8 and 18 in a dysmorphic child: A result of failed tetraploidy correction?
<p>Abstract</p> <p>Background</p> <p>Mosaic whole-chromosome tetrasomy has not previously been described as a cause of fetal malformations.</p> <p>Case presentation</p> <p>In a markedly dysmorphic child with heart malformations and developmental delay, CGH analysis of newborn blood DNA suggested a 50% dose increase of chromosomes 8 and 18, despite a normal standard karyotype investigation. Subsequent FISH analysis revealed leukocytes with four chromosomes 8 and four chromosomes 18. The child's phenotype had resemblance to both mosaic trisomy 8 and mosaic trisomy 18. The double tetrasomy was caused by mitotic malsegregation of all four chromatids of both chromosome pairs. A possible origin of such an error is incomplete correction of a tetraploid state resulting from failed cytokinesis or mitotic slippage during early embryonic development.</p> <p>Conclusion</p> <p>This unique case suggests that embryonic cells may have a mechanism for tetraploidy correction that involves mitotic pairing of homologous chromosomes.</p
Raman tweezers provide the fingerprint of cells supporting the late stages of KSHV reactivation
Kaposi's sarcoma-associated herpesvirus (KSHV) has both latent and lytic phases of replication. The molecular switch that triggers a reactivation is still unclear. Cells from S phase of cell cycle provide apt conditions for an active reactivation. In order to specifically delineate the Raman spectra of cells supporting KSHV reactivation, we followed a novel approach where cells were sorted based on the state of infection (latent Vs lytic) by a flow cytometer and then analyzed by the Raman tweezers. The Raman bands at 785, 813, 830, 1095, and 1128 cm-1 are specifically altered in cells supporting KSHV reactivation. These 5 peaks make up the Raman fingerprint of cells supporting KSHV reactivation. The physiological relevance of the changes in these peaks with respect to KSHV reactivation is discussed in the following report. Originally published Journal of Cellular and Molecular Medicine, Vol. 13, No. 8b, Aug 200
- β¦