205 research outputs found

    Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    Get PDF
    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble of trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.Fil: Nelson, Tammie R.. Los Alamos National Laboratory; Estados UnidosFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Galindo, Johan F.. Universidad Nacional de Colombia; ColombiaFil: Kleiman, Valeria D.. University of Florida; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unido

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells.</p> <p>Methods</p> <p>HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot.</p> <p>Results</p> <p>PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, <it>per se </it>does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as <it>caspase </it>and <it>bcl </it>family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR.</p> <p>Conclusion</p> <p>PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells.</p

    Risk Factors Associated with Adverse Fetal Outcomes in Pregnancies Affected by Coronavirus Disease 2019 (COVID-19): A Secondary Analysis of the WAPM study on COVID-19

    Get PDF
    To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Mean gestational age at diagnosis was 30.6\ub19.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09-1.12.7 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3-7.9; p=0.001) were independently associated with composite adverse fetal outcome. Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible
    corecore