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Coherent exciton-vibrational dynamics and energy
transfer in conjugated organics
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Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-

made systems, is currently a subject of intense study. Understanding this phenomenon is

important when designing carrier transport in optoelectronic materials. Here, excited state

dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a

broad range of molecular systems. Symmetries of the wavefunctions define a specific form of

the non-adiabatic coupling that drives quantum transitions between excited states, leading to

a collective asymmetric vibrational excitation coupled to the electronic system. This pro-

motes periodic oscillatory evolution of the wavefunctions, preserving specific phase and

amplitude relations across the ensemble of trajectories. The simple model proposed here

explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic

transitions, which is universal across multiple molecular systems. The observed relationships

between electronic wavefunctions and the resulting functionalities allows us to understand,

and potentially manipulate, excited state dynamics and energy transfer in molecular

materials.
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Coherence is defined as an in-phase evolution of specific
degrees of freedom. In electronic dynamics of materials
controlled by quantum mechanical laws, coherence fre-

quently appears as amplitude correlations in delocalized wave-
functions and manifests itself in interference patterns persisting
over long time-scales1. Formally, quantum-mechanical coher-
ences are defined as off-diagonal elements in the density matrix
and, as such, they are not directly observable but can be derived
from the presence of measurable spectroscopic signals. About a
decade ago, persistent quantum coherence was discovered in the
initial stage of photosynthesis across several highly structured
biological light-harvesting complexes1–7. Later, similar phenom-
ena were observed across many other molecular and nanos-
tructured materials8–12. While the initial reports had attributed
the observed dynamics to unexpectedly long-lasting electronic
coherences, later investigations linked it to the interplay between
both electronic and vibrational degrees of freedom13,14 and it was
broadly hypothesized that oscillatory evolution of delocalized
electronic wavefunctions can improve transport of energy and
charge carriers for light-harvesting, lighting, and other optoelec-
tronic applications1,3,8,15,16. The change in thinking towards
more complex interaction between vibrations and electronic
coherences was particularly prevalent in the realm of photo-
biology17, where commonly employed models treat vibrations as
quantum degrees of freedom18–23.

Most of the systems studied above belong to the “intermediate
coupling regime”, when the electronic and vibrational couplings
are comparable9. The transport processes following photoexcita-
tion are concomitant to non-radiative relaxation, when the
system dissipates the excess of electronic energy into heat. During
this internal conversion, energy typically flows from the electronic
to vibrational degrees of freedom via two distinct mechanisms.
When electronic states are well separated, the system can relax
adiabatically downhill on a single potential energy surface within
the Born–Oppenheimer framework. Alternatively, when electro-
nic states are close in energy, the Born–Oppenheimer approx-
imation breaks down and non-adiabatic evolution takes place
when the electronic state (and the respective potential energy
surface) changes during the dynamics8,14. This is a common
scenario for energy transfer. Here, one extreme includes strong
electronic couplings leading to fully delocalized states and an
efficient band-like transport (such as the case of classic semi-
conductors)24. Another extreme includes highly disordered
materials with large vibrational coupling that limits transport to
the incoherent hopping-like random walk regime24. Interestingly,
for materials in the “intermediate coupling regime”, there exists
an ample amount of spectroscopic evidence for robust coherent
electron-vibrational dynamics, which persists over long (fre-
quently picosecond) timescales at ambient conditions, in spite of
structural disorder, noise, and environmental fluctuations that
may be present. Subsequently, several recent reviews1–3,7 sug-
gested that coherence is a highly non-trivial and very important
factor, which can be used to achieve specific functionalities in
chemical and biological systems provided that underpinning
design principles25,26 are well understood.

Here, we show how coherent exciton-vibrational dynamics
emerges in photoactive molecular systems due to non-adiabatic
(non-Born–Oppenheimer) transitions between excited states.
Previous studies recognized the importance of symmetry of
vibronic coupling between different electronic states in resonant
transitions27,28, and electron29,30 and energy31,32 transfer rates.
Here, we are exploring its effect on coherent electron-vibrational
dynamics. This phenomenon is ubiquitous as it follows from
simple interplays between localizations and symmetries of the
wavefunctions. Namely, non-adiabatic transitions between exci-
ted states induce the spatial coherence between the eigenstates of

the electronic molecular Hamiltonian, which are dynamically
modulated by classical vibrational motions. Since such transitions
are often not a singular event and can persist for some time,
observed dynamics is strongly dependent on the system in
question. We first present a simple conceptual model rationaliz-
ing the asymmetric form of the derivative non-adiabatic coupling
(NAC) vector responsible for driving transitions between excited
states. This, in turn, initiates a specific vibrational excitation
modulating the wave-like localized–delocalized motion of the
electronic wavefunction. We further demonstrate universality of
these phenomena by inspecting photo-induced dynamics in
several common cases for organic conjugated materials. These
include a linear oligomer, nano-hoop, tree-like dendrimer, and
molecular dimer. In all these molecules, ultrafast dynamics and
exciton transport is directly simulated using our atomistic non-
adiabatic excited-state molecular dynamics (NEXMD) package33.
Coherent dynamics observed in these systems persists on the
timescale of hundreds of femtoseconds at room temperature and
in the presence of a bath, which agrees with experimental spec-
troscopic reports on various materials. Here, coherences are
controlled by electronic and vibrational coupling unique to the
chemical composition and structural conformation. Such general
behavior suggests common strategies for manipulating electronic
functionalities, such as charge and energy transport, in both
natural and synthetic systems.

Results
Alternating wavefunction symmetry. To establish a conceptual
framework, we recall that photo-induced electronic processes in
realistic molecular systems predominantly involve a broad
manifold of excited states. Subsequently, avoided and unavoided
(e.g., conical intersections) crossings between potential energy
surfaces (PESs) define the dynamics, where non-adiabatic tran-
sitions between states (internal conversion) are commonly
occurring due to a breakdown of the Born–Oppenheimer
approximation. Fig. 1a schematically shows two PESs with elec-
tronic wavefunctions labeled as Ψ1 and Ψ2 parametrically
depending on multidimensional vibrational degrees of freedom R,
where the colored box denotes the non-adiabatic coupling region.
Excited state wavefunctions in low-dimensional organic materials
such as conjugated polymers, branching structures, and molecular
aggregates are excitons (electron-hole pairs interacting via Cou-
lombic potential) with a large binding energy16. Importantly, the
envelopes of these wavefunctions always adopt a standing wave
pattern on the finite structures34 following the particle (exciton)
in a box model as shown in Fig. 1b. Here, the respective PES of
the state defines the multi-dimensional potential landscape for a
bound excitonic state. We further notice the presence of an
alternating symmetry between wavefunction phases for sequential
states in the band. While specific symmetry labels depend on the
molecular geometry, here we will loosely use “symmetric” and
“antisymmetric” labels as depicted in Fig. 1b. For example, the
excited states in a prototype conjugated polymer polyacetylene
have Ag and Bu symmetries (Fig. 1c), whereas Ψ1 and Ψ2 states in
the molecular homo-dimer are symmetric and antisymmetric
combinations of the parent ϕL and ϕR (left and right) monomer
states (Ψ1,2= ϕL ± ϕR) within the Frenkel exciton model35, thus
illustrating the basis for our notations.

Vibrational excitation initiated by internal conversion. In a
typical scenario for internal conversion (Fig. 1a), a photoexcited
wavepacket goes through the crossing region to transition from
the upper to the lower PES. Such processes are usually described
via semiclassical models establishing consistent propagation of
quantum (electrons) and classical (nuclei) degrees of freedom in
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the non-adiabatic regime33. Erhenfest and surface hopping36 are
examples of such methods allowing explicit treatment of large
molecular systems for which fully quantum dynamics is prohi-
bitively expensive8,37–39. Alternative perturbative approaches40–42

usually treat nuclei as an effective bath, and the self-energy due to
coupling of the nuclei and electrons is usually defined in fre-
quency space and is estimated by averaging over the nuclear
motion, thus losing the explicit correlation. Such approaches have
been extensively applied, for example, to biological light-
harvesting systems43,44. In this study, instead, the correlation
between the electronic and nuclear dynamics is explicitly included
in real time, though non-adiabatic, coupling. Notably, across all
methodologies, the derivative coupling NAC d12 (Fig. 1a) drives

the efficiency of the transition. First, the wavepacket on the upper
surface in the non-adiabatic region experiences the so-called
Pechukas force (P, Fig. 1a) in the direction of the NAC vector
pushing the system towards the crossing45. Furthermore, upon
non-adiabatic transition, the excess electronic energy is dispersed
into the nuclear velocities in the direction of the NAC vector to
enforce energy conservation. The direction of the NAC vector is
highly significant and it represents the direction of the driving
force acting along a unique normal mode direction throughout
regions of strong coupling46,47. The fact that the direction of
the NAC vector defines the flux of energy toward specific
vibrations has been emphasized by Bittner et al.48. This provides a
simple physical rationale for adjusting nuclear velocities along the
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Fig. 1 Electronic and vibrational coupling during internal conversion. a Schematic representation of dynamics through the non-adiabatic region (colored
box) on two potential energy surfaces defined by electronic wavefunctions Ψ1 and Ψ2 with dependence on electronic degrees of freedom R. During internal
conversion, the efficiency of the transition of the photoexcited wavepacket from the upper to the lower surface is driven by the derivative non-adiabatic
coupling d12. On the upper surface, the wavepacket is pushed towards the crossing by the Pechukas force, P, acting in the direction of the non-adiabatic
coupling vector (NAC). b The wavefunction on a finite molecule adopts a standing wave pattern according to the particle (exciton) in a box model
exhibiting either “symmetric” (Ψ1) or “antisymmetric” (Ψ2) form. The non-adiabatic transition from Ψ2 to Ψ1 corresponds to an antisymmetric-to-
symmetric transition between neighboring wavefunctions. c The two lowest energy excited states in the polyacetelene conjugated polymer exhibit Ag and
Bu symmetries. d The resulting vibrational excitation has an asymmetric form where the left and right part of the system experience structural
deformations with opposite phase (expansion and compression). e Sloshing of the localized wavefunction between left and right sides of the double well
potential is initiated by the asymmetric vibrational excitation which causes periodic modulations in the potential energy surface on the lower state
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direction of the non-adiabatic coupling vector. These electronic-
to-vibrational energy conversion principles were proven at var-
ious levels of theory45,49. Subsequently, the NAC vector defines a
displacement for a specific vibrational state within a lower PES
absorbing the excess electronic energy from transitions between
excited states. A rigorous iterative search of this vibrational
coordinate was recently reported for the state-to-state transitions
in the case of electronic transfer48. In our conceptual example of
an asymmetric-to-symmetric transition between neighboring
wavefunctions (Fig. 1b), the NAC vector defined in Fig. 1a (and
the resulting vibrational excitation) has a strictly asymmetric
form. Namely, the left (right) part of the system undergoes
expanding (contracting) structural deformation with opposite
displacement (or phase) as shown in Fig. 1d. We expect that such
vibrational excitation is related to the structural motions usually
considered to be coupled to the electronic degrees of freedom
such as C–C stretches and torsional librations. However, it is not
directly associated with any of the vibrational normal modes of
either the ground or any excited state, rather being a complex
superposition of several normal modes, as was demonstrated in
the case of charge transfer48. In the present examples, the non-
adiabatic coupling vector is commonly spread among a small
subset of normal modes (~2–5) such as C–C stretches and tor-
sions. A typical spectral width within each subclass of modes is
less than 0.05 eV. These modes become active experiencing a
substantial increase in their vibrational energy during the
process50.

Finally, initiated by electronic relaxation, asymmetric vibra-
tional excitation periodically modulates the electronic wavefunc-
tion motions on the lower PES. This leads to the “sloshing” of the
localized wavefunction between “left” and “right” sides (see
Fig. 1e) with possible intermittent spatial delocalizations across
the double well potential. Thus, symmetries of the initial
wavefunctions define the form of vibrational excitation emerging

after electronic relaxation, which, in turn, controls wave-like
localization–delocalization motion of the final wavefunction
underpinning synchronous vibronic dynamics in the excited
state. The dynamics of long-lived ground state wavepackets in
photosynthetic light-harvesting antennas has already been
reported in experiment19.

Applications to molecular systems. To validate this scenario in
realistic materials, we further study four systems: a linear oligo-
mer (Fig. 2a) representing conjugated polymer family39, a
nanohoop (Fig. 2b) prototyping circular geometry of ubiquitous
photosynthetic complexes38, a dendrimer (Fig. 2c) exemplifying
branched artificial light-harvesting systems37, and a dimer
(Fig. 2d) signifying molecular crystals and aggregates51. We use
our NEXMD package to simulate internal conversion following
photoexcitation in all the systems at ambient conditions in the
presence of a bath, as outlined in Methods.

While our calculations may involve higher lying excited states
to mimic time-resolved spectroscopic probes, here we focus our
analysis on the transition between the two lowest excited
electronic states S2 and S1 (S3 and S2 states in the dendrimer).
Fig. 2 displays the orbital plots of the transition densities (see
Methods) taken at the ground state equilibrium geometry, which
reflect spatial distributions of the excited state wavefunctions. We
immediately recognize the “asymmetric–symmetric” motif
(Fig. 1b) for Ψ1 and Ψ2 in all systems. In the dimer example,
orbitals for one monomer are in-phase, whereas they are out-of-
phase for the other, reflecting “+” and “−” wavefunction
combinations as discussed above. As expected, NAC d12 vectors
have the corresponding spatially asymmetric forms (Fig. 2a–d,
bottom plots), conveying the vibrational excitation dynamically
emerging due to electronic transition, in line with the schematic
in Fig. 1d. Interestingly, the asymmetric form of NAC persists
across all dynamical simulations as illustrated for the case of a
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dimer in Supplementary Fig. 1. It is clear that even for complex
systems, the behavior described using our simple symmetry
arguments holds true, as long as the system is composed of
similar elementary building blocks (e.g., monomeric units in the
case of a molecular aggregate or a crystal).

Revealing spatially localized electronic states. Having confirmed
the foundations of our model, we further turn to the analysis of
dynamical variables. Surface hopping algorithms underpinning the
NEXMD simulations produce a trajectory ensemble. The mean-
ingful observables, such as relaxation timescales, are then calculated
as statistical averages. When non-radiative relaxation pathways lead
the system to the regions where electronic states are not well
separated and the Born–Oppenheimer (adiabatic) description is
insufficient, values of the energy gaps lower than ~0.1 eV are
expected. Plots of the relevant energy gap distributions for all sys-
tems (Supplementary Fig. 2) confirm that near the non-adiabatic
transitions, the energy gap is small with a narrow distribution across
the ensemble. Consequently, no superficial distinction between
adiabatic and non-adiabatic regimes is made in our simulations,
and the NEXMD trajectories are run for the entire duration of the
dynamics starting from a ground state configuration instanta-
neously promoted to an excited state (Supplementary Fig. 3). For
some systems, the wavepacket passes through the non-adiabatic
region fast (e.g., oligomer) and the subsequent dynamics is essen-
tially adiabatic. However, others (such as dendrimer or dimer)
represent the case when the energy separation between excited
states is comparable to the frequency of intramolecular motions and
non-adiabatic dynamics persist for longer timescales. Consistent
with the model in Fig. 1, the excitation is made to the low energy
states that are less strongly overlapping compared to the dense
energy manifold at higher energies that can be confirmed in the
equilibrated absorption spectra in Supplementary Fig. 3 showing
the density of excited states along with the excitation energy for
each system. The electronic character of the initial excitation is
mostly uniform across the ensemble. We start by inspecting a
typical individual trajectory from the ensemble for each system.
Fig. 3 shows transition density snapshots taken at different times
during dynamics. In the case of the linear oligomer, the initial state
is typically an asymmetric wavefunction with a single node along
the backbone (Fig. 3a) directly conforming to Fig. 1b. Non-adiabatic
transition leads to the sloshing of the wavefunction, following
Fig. 1d, between left and right parts of the molecule (see snapshots
in Fig. 3a) until equilibration with the bath produces a self-trapped
exciton in the middle of the oligomer. Remarkably, the same sce-
nario holds for wavefunction evolution in other systems: we observe
sloshing motions between two semi-circles in the nanohoop
(Fig. 3b), right and left dendritic branches (Fig. 3c), and two
monomers in a dimer (Fig. 3d and a Supplementary Movie 1).
There are some obvious differences owing to the specific molecular
structure. For example, in the dendrimer case, a large initial delo-
calization arises from the high density of coupled excited states
(Frenkel excitons) accessed by the initial excitation combined with
thermal fluctuations producing an ensemble of conformations. We
notice a localization of transition density on the right branch even
before the non-adiabatic transition, owing to the presence of the
Pechukas force. The subsequent non-adiabatic electronic transi-
tions, driven by strong coupling to high-frequency vibrational
modes, quickly lead to the appearance of a spatially localized state in
conjunction with electronic energy dissipation into nuclear motions
scattered across the entire molecule. Moreover, in all of the systems
(Fig. 3) we observe intermittent spatial delocalization of the elec-
tronic wavefunction along the trajectory, set by the interplay of
electronic and vibronic couplings coexisting in a given system. Such
delocalization first usually emerges at the moment of non-adiabatic

transition (Δt= 0) and further re-appears during the wavefunction
motion in the middle between localization on “right” and “left”
sides of the system. The dissipative processes (bath degrees of
freedom) limit the number of such periodic events.

Capturing periodic dynamical signatures. The signatures of such
concerted vibronic dynamics can be followed by analyzing common
descriptors for both vibrational and electronic degrees of freedom.
Bond-length alternation, BLA (see Methods) is a typical parameter
for monitoring C–C stretches52. Fig. 3a displays periodic out-of-
phase (with respect to left and right molecular halves) BLA varia-
tions in the linear oligomer. Alternatively, we can monitor dis-
placements of the torsion angle on the top and bottom sides of the
hoop, which also conveys out-of-phase vibration, as illustrated in
Fig. 3b. Identical periodic dynamical signatures can be observed by
following electronic degrees of freedom where spatial distribution of
the state transition density is a good descriptor53. This is illustrated
for the dendrimer (Fig. 3c) and dimer (Fig. 3d) in the evolution of
the fraction of transition density contained in each branch or
monomer, revealing oscillations associated with the changes in
wavefunction localization. Other calculated variations of BLA, tor-
sions, and transition densities are shown in Supplementary
Figs. 4–7. Altogether, there is a consistent picture of coupled
electron-nuclei dynamics modulated by specific vibrational excita-
tions initiated by non-adiabatic transitions.

Discussion
It is interesting to note that such concerted in-phase coherent
vibronic dynamics is observed across the entire ensemble of tra-
jectories with slow decay for well over 100 fs at room temperature
for all considered systems and others52,54, overcoming effects of
thermal fluctuations, solvent viscosity, and disorder. We mention
spectroscopic observations of “coherent phonons” persisting up to
picoseconds (e.g., in the case of carbon nanotubes11), when the
entire ensemble of molecules undergoes in-phase vibrational
motion. While we discuss here only fast C–C stretching, slow tor-
sions along the chain represent another structural motion coupled
to the electronic system. By averaging over the C–C vibrations, one
can inspect these slow recurring motions on the timescale of several
picoseconds as illustrated in the case of the nanohoop (see Sup-
plementary Fig. 7). An important spectroscopic observation is that
the broad pulse may create coherences between electronic states in
the initial condition1,4–7,9,10. These aspects invite further investi-
gation by direct electronic dynamics modeling using advanced
methodologies capable of describing interacting trajectories such as
coherent Gaussian wavepacket approaches or multi-configurational
methods55,56.

In summary, we show the appearance of coherent electron-
vibrational dynamics initiated by non-adiabatic transitions between
excited states. Our concept is verified by direct atomistic NEXMD
simulations of internal conversion in typical organic conjugated
systems such as oligomer, hoop, dendrimer, and a molecular dimer.
In all cases, we observe remarkably similar excited state dynamics
initiated by non-adiabatic transitions between states leading to a
specific asymmetric vibrational excitation, which modulates sub-
sequent spatial evolution of the electronic wavefuntion described as
wave-like motion. Consequently, we conclude that these phenomena
are omnipresent across a very broad range of molecular materials
and may potentially provide an alternative interpretation of existing
and future spectroscopic experiments. Namely, an inevitable energy
flow from electronic degrees of freedom to vibrations in the process
of non-radiative relaxation and in the presence of strong
electron–phonon coupling creates specific vibrational excitations
that spatially modulate the excited electronic state before localizing it
into a “self-trapped” excitation. Thus, there exists a dynamical
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regime in which vibrations may efficiently transfer the electronic
excitation across molecular constituents. Across all examples stu-
died, such dynamics are vastly different from system to system in
terms of persistence and timescales including cases of coupled
multi-chromophore systems. Consequently, it may be possible to
achieve the desired function (such as specific directed funneling of
excitons) by relying on observed ultrafast dynamics of exciton-
vibrations (e.g., by seeking a dynamical regime underpinning an
efficient transport in multi-chromophore systems with large dis-
order and strong electron–phonon coupling). Thus, these observed
underlying physical principles can be further exploited for design of
functional organic materials for various optoelectronic applications.

Methods
Non-adiabatic excited state molecular dynamics. The non-adiabatic excited-
state molecular dynamics (NEXMD) software package33 has been used to simulate
the photoexcitation and subsequent electronic and vibrational energy relaxation
and redistribution of each system: an anthracene dimer dithia-anthracenophane
(DTA), a cycloparaphelynene with 16 phenyl units ([16]CPP), an unsymmetrical
phenylene–ethynylene dendrimer with an ethynylene–perylene sink, and a linear
paraphenylene with 7 phenyl units. The NEXMD combines the fewest switches
surface hopping (FSSH) algorithm57 with “on the fly” analytical calculations of
excited-state energies53,58,59, gradients60,61, and non-adiabatic coupling terms62–64.
The collective electronic oscillator (CEO) approach65–67 is used to compute excited
states at the configuration interaction singles (CIS) level of theory68. The semi-
empirical AM1 Hamiltonian69 has been used for all systems except for DTA where
the PM3 Hamiltonian70 is used.
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NEXMD simulation details and parameters. One nanosecond ground state
molecular dynamics simulations were performed for initial equilibration of all
molecular structures studied. The Langevin thermostat71 is used with temperature
T= 300 K, a friction coefficient γ= 20.0 ps−1 and time step Δt= 0.5 fs. The
ground state trajectory was used to collect sets of initial configurations for the
subsequent NEXMD simulations. The NEXMD simulations were started from
these initial configurations by instantaneously promoting the system to an
initial excited state α with the energy Ωα, selected according to a Frank-Condon
window defined as gα ¼ fαexp �T2 Elaser � Ωαð Þ2� �

. fα represents the normalized
oscillator strength for the α state, and Elaser represents the energy of a laser pulse
centered at the maximum of the absorption spectra of a given molecule. The
excitation energy width is given by the transform-limited relation of a Gaussian
pulse with a full width half maximum (FWHM) of 100 fs, giving a value of
T2= 42.5 fs. Using gα, the initial excited state for each equilibrated structure was
determined.

Ten electronic excited states and their corresponding non-adiabatic couplings
have been considered during NEXMD simulations for all systems. In agreement
with previous numerical tests, 400 trajectories is found to be sufficient to achieve
statistical convergence. A classical time step of 0.1 fs has been used for nuclear
propagation and a quantum time step of 0.025 fs has been used to propagate the
electronic degrees of freedom. Empirical corrections were introduced to account
for electronic decoherence72 and trivial unavoided crossings were diagnosed by
tracking the identities of states73. The coherent vibronic dynamics observed in the
present systems occur after the final effective hop to the lowest energy state and are
therefore not an artifact of the decoherence model employed here72. Upon
transition, the system decoheres instantaneously and moves independently on the
lower surface with electron-vibrational coherent dynamics. In fact, the observed
dynamics remains roughly the same if decoherence corrections are employed for
the original FSSH method or not. These corrections primarily affect the relaxation
timescales and eliminate numerical inconsistencies from the original FSSH74. More
details concerning the NEXMD implementation and parameters can be found
elsewhere33,72,73,75.

Analysis of electronic transition density. During the NEXMD simulations, the
electronic energy redistribution is monitored by computing the time-dependent
localization of the electronic transition density, whose diagonal elements (ρgα)nn
(index n refers to atomic orbital (AO) basis functions) represent the changes in the
distribution of the electronic density induced by photoexcitation from the ground
state g to an excited electronic α state76. The orbital representation of the transition
density is convenient for the analysis of excited state properties. For example,
natural transition orbitals (NTOs)77 enable the analysis of electron-hole separation
in excitonic wavefunctions and charge transfer states by representing the electronic
transition density matrix as essential pairs of particle and hole orbitals. Similarly,
the orbital representation of the diagonal elements of the transition density is
beneficial for the analysis of the total spatial extent of the excited state wave-
function. By partitioning the molecular system into moieties and/or chromophore
units, the fraction of transition density, ρgαðtÞð Þ2X , localized on each unit X at a
given time can be obtained by summing the contributions of the AO from each
atom (index A) in X and occasionally contributions of the AO from atoms localized
on the boundary with another unit (index B)

ðρgαðtÞÞ2X ¼
X

nAmA

ðρgαnAmA
ðtÞÞ2 þ 1

2

X

nBmB

ðρgαnBmB
ðtÞÞ2 ð1Þ

Analysis of bond length alternation. Molecular conformations during NEXMD
simulations are analyzed by following the bond-length alternation (BLA). BLA and
torsions (dihedral angles) represent the nuclear motions that are strongly coupled
to the electronic degrees of freedom. BLA provides a convenient vibrational
descriptor that reflects the inhomogeneity in the distribution of electrons along the
π-conjugated molecule and it is generally defined as a difference between single and
double bond lengths along the conjugated chain

BLA ¼ d1 � d2 �
2
3
� d3 �

1
3
; ð2Þ

where d1, d2, and d3 are consecutive bond lengths in the conjugated system.
Smaller values of BLA are associated with better π-conjugation and, therefore, an
enhancement of the electronic delocalization78,79. Torsions are typically slower
motions than C–C stretches. Here, the torsional motion of interest refers to the
inter-ring dihedral angle, that indicates how rotated phenyl rings are with respect
to a neighboring ring. The inter-ring dihedral angle modulates π-electron
delocalization (large inter-ring dihedral angles can create conjugation breaks) and
affects the molecular relaxation pathways.

Data availability. All relevant data are available from the authors upon request.
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