997 research outputs found

    Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations

    Get PDF
    We present a detailed analysis of the zenith angle distributions of atmospheric neutrino events observed in the Super-Kamiokande (SK) underground experiment, assuming two-flavor and three-flavor oscillations (with one dominant mass scale) among active neutrinos. In particular, we calculate the five angular distributions associated to sub-GeV and multi-GeV \mu-like and e-like events and to upward through-going muons, for a total of 30 accurately computed observables (zenith bins). First we study how such observables vary with the oscillation parameters, and then we perform a fit to the experimental data as measured in SK for an exposure of 33 kTy (535 days). In the two-flavor mixing case, we confirm the results of the SK Collaboration analysis, namely, that \nu_\mu\nu_\tau oscillations are preferred over \nu_\mu\nu_e, and that the no oscillation case is excluded with high confidence. In the three-flavor mixing case, we perform our analysis with and without the additional constraints imposed by the CHOOZ reactor experiment. In both cases, the analysis favors a dominance of the \nu_\mu\nu_\tau channel. Without the CHOOZ constraints, the amplitudes of the subdominant \nu_\munu_e and \nu_e\nu_\tau transitions can also be relatively large, indicating that, at present, current SK data do not exclude sizable \nu_e mixing by themselves. After combining the CHOOZ and SK data, the amplitudes of the subdominant transitions are constrained to be smaller, but they can still play a nonnegligible role both in atmospheric and other neutrino oscillation searches. In particular, we find that the \nu_e appearance probability expected in long baseline experiments can reach the testable level of ~15%.Comment: 35 pages (RevTeX), including 20 ps figures (with epsfig.sty

    Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data

    Get PDF
    We review the status of nu_mu-->nu_tau flavor transitions of atmospheric neutrinos in the 92 kton-year data sample collected in the first phase of the Super-Kamiokande (SK) experiment, in combination with the recent spectral data from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring muon events). We consider a theoretical framework which embeds flavor oscillations plus hypothetical decoherence effects, and where both standard oscillations and pure decoherence represent limiting cases. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1) as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As compared with standard oscillations, the case of pure decoherence is disfavored, although it cannot be ruled out yet. In the general case, additional decoherence effects in the nu_mu-->nu_tau channel do not improve the fit to the SK and K2K data, and upper bounds can be placed on the associated decoherence parameter. Such indications, presently dominated by SK, could be strengthened by further K2K data, provided that the current spectral features are confirmed with higher statistics. A detailed description of the statistical analysis of SK and K2K data is also given, using the so-called ``pull'' approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript

    Mantle geoneutrinos in KamLAND and Borexino

    Full text link
    The KamLAND and Borexino experiments have observed, each at ~4 sigma level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. To this purpose, we analyze in detail the experimental Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino oscillation effects. We estimate the crustal flux at the two detector sites, using state-of-the-art information about the Th and U distribution on global and local scales. We find that crust-subtracted signals show hints of a residual mantle component, emerging at ~2.4 sigma level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th and U abundances, within +-1 sigma uncertainties comparable to the spread of predictions from recent mantle models.Comment: Slight changes and improvements in the text & figures. Results unchanged. To appear in Phys. Rev.

    Quasi-energy-independent solar neutrino transitions

    Get PDF
    Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.Comment: Title changed; text and acronyms revised; results unchanged. To appear in PR

    Status of three-neutrino oscillation parameters, circa 2013

    Full text link
    The standard three-neutrino (3nu) oscillation framework is being increasingly refined by results coming from different sets of experiments, using neutrinos from solar, atmospheric, accelerator and reactor sources. At present, each of the known oscillation parameters [the two squared mass gaps (delta m^2, Delta m^2) and the three mixing angles (theta_12}, theta_13, theta_23)] is dominantly determined by a single class of experiments. Conversely, the unknown parameters [the mass hierarchy, the theta_23 octant and the CP-violating phase delta] can be currently constrained only through a combined analysis of various (eventually all) classes of experiments. In the light of recent new results coming from reactor and accelerator experiments, and of their interplay with solar and atmospheric data, we update the estimated N-sigma ranges of the known 3nu parameters, and revisit the status of the unknown ones. Concerning the hierarchy, no significant difference emerges between normal and inverted mass ordering. A slight overall preference is found for theta_23 in the first octant and for nonzero CP violation with sin delta < 0; however, for both parameters, such preference exceeds 1 sigma only for normal hierarchy. We also discuss the correlations and stability of the oscillation parameters within different combinations of data sets.Comment: Updated and revised version, accepted for publication in PRD. The analysis includes the latest (March 2014) T2K disappearance data: all the figures and the numerical results have been updated, and parts of the text have been revised accordingl

    LFV and Dipole Moments in Models with A4 Flavour Symmetry

    Full text link
    It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.Comment: 10 pages, 1 figure. Adapted from a talk given at "DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries", December 11-16 2008, Valencia, Spai

    Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior

    Get PDF
    The KamLAND and Borexino experiments have detected electron antineutrinos produced in the decay chains of natural thorium and uranium (Th and U geoneutrinos). We analyze the energy spectra of current geoneutrino data in combination with solar and long-baseline reactor neutrino data, with marginalized three-neutrino oscillation parameters. We consider the case with unconstrained Th and U event rates in KamLAND and Borexino, as well as cases with fewer degrees of freedom, as obtained by successively assuming for both experiments a common Th/U ratio, a common scaling of Th+U event rates, and a chondritic Th/U value. In combination, KamLAND and Borexino can reject the null hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in broad agreement with typical Earth model expectations. Conversely, the results disfavor the hypothesis of a georeactor in the Earth's core, if its power exceeds a few TW. The interplay of KamLAND and Borexino geoneutrino data is highlighted.Comment: 12 pages, including 6 figure
    corecore