553 research outputs found

    Noise and Periodic Modulations in Neural Excitable Media

    Get PDF
    We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural excitable medium. To this purpose, we have considered two types of modulations; namely, variations of the resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of if the system is monostable or bistable.Comment: 13 pages, RevTex, 5 PostScript figure

    In Pursuit Of General Behavioral Relations

    Get PDF
    Efforts to develop behavioral technologies from advances in basic research assume that results from studies with nonhuman subjects can, in some instances, be applied to human behavior. The behavioral principles likely to be most useful for application are those that represent robust general behavioral relations. Basic and applied research on behavioral momentum suggests that there is a general behavioral relation between the persistence of behavior and the rate of reinforcement obtained in a given situation. Understanding the factors that affect behavioral persistence may have important implications for applied behavior analysts that justify studies aimed at establishing the generality and limits of the functional relation between reinforcement rate and behavioral persistence. Strategies for establishing the generality of behavioral relations are reviewed, followed by a brief summary of the evidence for the generality of behavioral momentum

    Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the interfant-06 protocol: Results from an international phase III randomized study

    Get PDF
    PURPOSE Infant acute lymphoblastic leukemia (ALL) is characterized by KMT2A (MLL) gene rearrangements and coexpression of myeloid markers. The Interfant-06 study, comprising 18 national and international study groups, tested whether myeloid-style consolidation chemotherapy is superior to lymphoid style, the role of stemcell transplantation (SCT), and which factors had independent prognostic value. MATERIALS AND METHODS Three risk groups were defined: low risk (LR): KMT2A germline; high risk (HR): KMT2A-rearranged and older than 6 months with WBC count 300 3 109/L or more or a poor prednisone response; and medium risk (MR): all other KMT2A-rearranged cases. Patients in the MR and HR groups were randomly assigned to receive the lymphoid course low-dose cytosine arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid courses, namely araC, daunorubicin, etoposide (ADE) and mitoxantrone, araC, etoposide (MAE). RESULTS A total of 651 infants were included, with 6-year event-free survival (EFS) and overall survival of 46.1% (SE, 2.1) and 58.2% (SE, 2.0). In West European/North American groups, 6-year EFS and overall survival were 49.4% (SE, 2.5) and 62.1% (SE, 2.4), which were 10% to 12% higher than in other countries. The 6-year probability of disease-free survival was comparable for the randomized arms (ADE1MAE 39.3% [SE 4.0; n = 169] v IB 36.8% [SE, 3.9; n = 161]; log-rank P = .47). The 6-year EFS rate of patients in the HR group was 20.9% (SE, 3.4) with the intention to undergo SCT; only 46% of them received SCT, because many had early events. KMT2A rearrangement was the strongest prognostic factor for EFS, followed by age, WBC count, and prednisone response. CONCLUSION Early intensification with postinduction myeloid-type chemotherapy courses did not significantly improve outcome for infant ALL compared with the lymphoid-type course IB. Outcome for infant ALL in Interfant- 06 did not improve compared with that in Interfant-99

    Foci of orientation plasticity in visual cortex

    Get PDF
    [Abstract] Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity1, 2, 3, 4. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains5 that converge at singularities or pinwheel centres6, 7. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1

    Adaptive Gain Modulation in V1 Explains Contextual Modifications during Bisection Learning

    Get PDF
    The neuronal processing of visual stimuli in primary visual cortex (V1) can be modified by perceptual training. Training in bisection discrimination, for instance, changes the contextual interactions in V1 elicited by parallel lines. Before training, two parallel lines inhibit their individual V1-responses. After bisection training, inhibition turns into non-symmetric excitation while performing the bisection task. Yet, the receptive field of the V1 neurons evaluated by a single line does not change during task performance. We present a model of recurrent processing in V1 where the neuronal gain can be modulated by a global attentional signal. Perceptual learning mainly consists in strengthening this attentional signal, leading to a more effective gain modulation. The model reproduces both the psychophysical results on bisection learning and the modified contextual interactions observed in V1 during task performance. It makes several predictions, for instance that imagery training should improve the performance, or that a slight stimulus wiggling can strongly affect the representation in V1 while performing the task. We conclude that strengthening a top-down induced gain increase can explain perceptual learning, and that this top-down signal can modify lateral interactions within V1, without significantly changing the classical receptive field of V1 neurons

    Behavior maintained by intravenous injection of codeine, cocaine, and etorphine in the rhesus macaque and the pigtail macaque

    Full text link
    Lever-pressing behavior of two species of macaque, the rhesus macaque ( M. mulatta ) and the pigtail macaque ( M. nemestrina ) was maintained by intravenous injection of codeine, etorphine, or cocaine. Monkeys responded under a fixed-ratio 30 timeout 600 s schedule of drug injection during two daily experimental sessions. Drug-maintained behavior was studied under two access conditions. Under the first condition, selected doses of codeine or cocaine were available for ten consecutive sessions. Under the second condition, responding was maintained by 0.32 mg/kg codeine or 0.32 mg/kg cocaine, and saline and selected doses of codeine, etorphine, and cocaine were substituted during single experimental sessions. Performance varied with drug and injection dose, access condition, and macaque species. For all three drugs, response rate increased and then decreased as injection dose increased. Maximal rates were maintained by 0.10–0.32 mg/kg codeine, 0.0003–0.001 mg/kg etorphine, and 0.10–0.32 mg/kg cocaine. A cocaine dose of 0.32 mg/kg maintained higher rates than any dose of codeine or etorphine, and maintained higher rates when available during consecutive sessions than when substituted for codeine for a single session. Codeine maintained similar rates under all access conditions. The pigtail macaques had short catheter lives, did not readily acquire codeine-maintained responding, and displayed lower rates of drug-maintained lever pressing than the rhesus macaques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46415/1/213_2004_Article_BF00427883.pd

    Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons

    Get PDF
    The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting
    • …
    corecore