645 research outputs found

    Obstruction of biodiversity conservation by minimum patch size criteria.

    Get PDF
    Minimum patch size criteria for habitat protection reflect the conservation principle that a single large (SL) patch of habitat has higher biodiversity than several small (SS) patches of the same total area (SL > SS). Nonetheless, this principle is often incorrect, and biodiversity conservation requires placing more emphasis on protection of large numbers of small patches (SS > SL). We used a global database reporting the abundances of species across hundreds of patches to assess the SL > SS principle in systems where small patches are much smaller than the typical minimum patch size criteria applied for biodiversity conservation (i.e., ∼85% of patches <100 ha). The 76 metacommunities we examined included 4401 species in 1190 patches. From each metacommunity, we resampled species-area accumulation curves to evaluate how biodiversity responded to habitat existing as a few large patches or as many small patches. Counter to the SL > SS principle and consistent with previous syntheses, species richness accumulated more rapidly when adding several small patches (45.2% SS > SL vs. 19.9% SL > SS) to reach the same cumulative area, even for the very small patches in our data set. Responses of taxa to habitat fragmentation differed, which suggests that when a given total area of habitat is to be protected, overall biodiversity conservation will be most effective if that habitat is composed of as many small patches as possible, plus a few large ones. Because minimum patch size criteria often require larger patches than the small patches we examined, our results suggest that such criteria hinder efforts to protect biodiversity

    Immigration Rates in Fragmented Landscapes – Empirical Evidence for the Importance of Habitat Amount for Species Persistence

    Get PDF
    BACKGROUND: The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus) as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape. CONCLUSIONS/SIGNIFICANCE: Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in providing the underlying mechanism that drives both patch-area effects and species extinction thresholds

    The Relative Influence of Habitat Amount and Configuration on Genetic Structure Across Multiple Spatial Scales

    Get PDF
    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent

    Tearing Out the Income Tax by the (Grass)Roots

    Get PDF
    Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :

    Matrix composition mediates effects of habitat fragmentation: a modelling study

    Get PDF
    Context Habitat loss has clear negative effects on biodiversity, but whether fragmentation per se (FPS), excluding habitat loss does is debatable. A contribution to this debate may be that many fragmentation studies tend to use landscapes of fragmented focal-habitat and a single vastly different species-poor intervening land cover (the matrix). Objectives How does matrix composition influence the effect of FPS on biodiversity?. Methods Using an individual-based model to investigate the effect of different configurations of the matrix on the relationship between FPS and biodiversity of the focal-habitat. We manipulated the number and quality of land cover types in the matrix, and their similarity to the focal-habitat. Results Extremely different matrix, caused an order of magnitude stronger effect of FPS on alpha- and gamma-diversity and beta-diversity to decline. Low FPS led to high gamma-diversity. Increasing FPS caused a dramatic decline to low diversity. In contrast landscapes with a more similar matrix had lower diversity under low FPS declining little with increasing FPS. Having few matrix types caused beta-diversity to decline in general compared to landscapes with a larger numbers. Conclusions The effects of FPS on biodiversity may change depending on the number of matrix types and their similarity to the focal-habitat. We recommend that fragmentation studies should consider a greater variety of landscapes to help assess in which cases FPS does not have a negative impact and allow better predictions of the impacts of fragmentation. We show the importance of having a diversity of matrix land cover types and improving the hospitability of the matrix for species dependent on the focal-habitat

    Reconceptualizing conservation

    Get PDF
    Early definitions of conservation focused largely on the end goals of protection or restoration of nature, and the various disciplinary domains that contribute to these ends. Conservation science and practice has evolved beyond being focused on just issues of scarcity and biodiversity decline. To better recognize the inherent links between human behaviour and conservation, “success” in conservation is now being defined in terms that include human rights and needs. We also know that who engages in conservation, and how, dictates the likelihood that conservation science will be embraced and applied to yield conservation gains. Here we present ideas for reconceptualizing conservation. We emphasize the HOW in an attempt to reorient and repurpose the term in ways that better reflect what contemporary conservation is or might aspire to be. To do so, we developed an acrostic using the letters in the term “CONSERVATION” with each serving as an adjective where C = co-produced, O = open, N = nimble, S = solutions-oriented, E = empowering, R = relational, V = values-based, A = actionable, T = transdisciplinary, I = inclusive, O = optimistic, and N = nurturing. For each adjective, we briefly describe our reasoning for its selection and describe how it contributes to our vision of conservation. By reconceptualizing conservation we have the potential to center how we do conservation in ways that are more likely to result in outcomes that benefit biodiversity while also being just, equitable, inclusive, and respectful of diverse rights holders, knowledge holders, and other actors. We hope that this acrostic will be widely adopted in training to help the next generation of conservation researchers and practitioners keep in mind what it will take to make their contributions effective and salient

    Relating Habitat and Climatic Niches in Birds

    Get PDF
    Predicting species' responses to the combined effects of habitat and climate changes has become a major challenge in ecology and conservation biology. However, the effects of climatic and habitat gradients on species distributions have generally been considered separately. Here, we explore the relationships between the habitat and thermal dimensions of the ecological niche in European common birds. Using data from the French Breeding Bird Survey, a large-scale bird monitoring program, we correlated the habitat and thermal positions and breadths of 74 bird species, controlling for life history traits and phylogeny. We found that cold climate species tend to have niche positions in closed habitats, as expected by the conjunction of the biogeographic history of birds' habitats, and their current continent-scale gradients. We also report a positive correlation between thermal and habitat niche breadths, a pattern consistent with macroecological predictions concerning the processes shaping species' distributions. Our results suggest that the relationships between the climatic and habitat components of the niche have to be taken into account to understand and predict changes in species' distributions

    Roadless and Low-Traffic Areas as Conservation Targets in Europe

    Get PDF
    With increasing road encroachment, habitat fragmentation by transport infrastructures has been a serious threat for European biodiversity. Areas with no roads or little traffic (“roadless and low-traffic areas”) represent relatively undisturbed natural habitats and functioning ecosystems. They provide many benefits for biodiversity and human societies (e.g., landscape connectivity, barrier against pests and invasions, ecosystem services). Roadless and low-traffic areas, with a lower level of anthropogenic disturbances, are of special relevance in Europe because of their rarity and, in the context of climate change, because of their contribution to higher resilience and buffering capacity within landscape ecosystems. An analysis of European legal instruments illustrates that, although most laws aimed at protecting targets which are inherent to fragmentation, like connectivity, ecosystem processes or integrity, roadless areas are widely neglected as a legal target. A case study in Germany underlines this finding. Although the Natura 2000 network covers a significant proportion of the country (16%), Natura 2000 sites are highly fragmented and most low-traffic areas (75%) lie unprotected outside this network. This proportion is even higher for the old Federal States (western Germany), where only 20% of the low-traffic areas are protected. We propose that the few remaining roadless and low-traffic areas in Europe should be an important focus of conservation efforts; they should be urgently inventoried, included more explicitly in the law and accounted for in transport and urban planning. Considering them as complementary conservation targets would represent a concrete step towards the strengthening and adaptation of the Natura 2000 network to climate change
    corecore