1,401 research outputs found

    Enhanced abundances in three large-diameter mixed-morphology supernova remnants

    Full text link
    We present an X-ray study of three mixed-morphology supernova remnants (SNRs), HB 21, CTB 1 and HB 3, using archival ASCA and ROSAT data. These data are complemented by archival Chandra X-ray Observatory data for CTB 1 and XMM-Newton X-ray Observatory data for HB 3. The spectra from HB 21 and HB 3 are well-described with a single-temperature thermal plasma in ionization equilibrium, while a two-temperature thermal plasma is found in CTB 1. We found enhanced abundances in all three SNRs. The elemental abundance of Mg is clearly enhanced in CTB 1, while HB 21 has enhanced abundances of Si and S. The situation is not so clear in HB 3 -- the plasma in this SNR either has significantly enhanced abundances of O, Ne and Mg, or it has marginally enhanced abundances of Mg and under-abundant Fe. We discuss the plausibility of mixed-morphology SNR models for the three SNRs and the presence of enhanced abundances. We revise a list of MM SNRs and their properties, compare the three SNRs studied here with other members of this class, and discuss the presence of enhanced elemental abundances in MM SNRs. We also report the ASCA detection of a compact source in the southern part of HB 3. The source spectrum is consistent with a power law with a photon index of ~2.7, and an unabsorbed X-ray flux of ~10^{-12} erg/cm^2/s in the 0.5--10.0 keV band. The column density towards this source differs from that towards the SNR, and it is therefore unlikely they are related.Comment: 26 pages, 15 figures, revised version (minor changes), accepted for publication in ApJ (10 Aug 2006

    XMM-Newton discovery of 217 s pulsations in the brightest persistent supersoft X-ray source in M31

    Full text link
    We report on the discovery of a periodic modulation in the bright supersoft X-ray source XMMU J004252.5+411540 detected in the 2000-2004 XMM-Newton observations of M31. The source exhibits X-ray pulsations with a period P~217.7 s and a quasi-sinusoidal pulse shape and pulsed fraction ~7-11%. We did not detect statistically significant changes in the pulsation period on the time scale of 4 years. The X-ray spectra of XMMU J004252.5+411540 are extremely soft and can be approximated with an absorbed blackbody of temperature 62-77 eV and a weak power law tail of photon index ~1.7-3.1 in the 0.2-3.0 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 19 mag suggest that it belongs to M31. The estimated bolometric luminosity of the source varies between ~2e38 and ~8e38 ergs/s at 760 kpc, depending on the choice of spectral model. The X-ray pulsations and supersoft spectrum of XMMU J004252.5+411540 imply that it is almost certainly an accreting white dwarf, steadily burning hydrogen-rich material on its surface. We interpret X-ray pulsations as a signature of the strong magnetic field of the rotating white dwarf. Assuming that the X-ray source is powered by disk accretion, we estimate its surface field strength to be in the range 4e5 G <B_{0}<8e6 G. XMMU J004252.5+411540 is the second supersoft X-ray source in M31 showing coherent pulsations, after the transient supersoft source XMMU J004319.4+411758 with 865.5 s pulsation period.Comment: 11 pages, 4 figures, uses emulateapj style. Submitted to Ap

    Spatially resolved spectra of 3C galaxy nuclei

    Get PDF
    We present and discuss visible-wavelength long-slit spectra of four low redshift 3C galaxies obtained with the STIS instrument on the Hubble Space Telescope. The slit was aligned with near-nuclear jet-like structure seen in HST images of the galaxies, to give unprecedented spatial resolution of the galaxy inner regions. In 3C 135 and 3C 171, the spectra reveal clumpy emission line structures that indicate outward motions of a few hundred km s1^{-1} within a centrally illuminated and ionised biconical region. There may also be some low-ionisation high-velocity material associated with 3C 135. In 3C 264 and 3C 78, the jets have blue featureless spectra consistent with their proposed synchrotron origin. There is weak associated line emission in the innermost part of the jets with mild outflow velocity. These jets are bright and highly collimated only within a circumnuclear region of lower galaxy luminosity, which is not dusty. We discuss the origins of these central regions and their connection with relativistic jets.Comment: 15 pages incl Tables, 12 diagrams, To appear in A

    Shocked Molecular Gas in the Supernova Remnant HB 21

    Get PDF
    We report the discovery of the shocked molecular gas in the supernova remnant HB 21. We derive the physical parameters of the shocked gas from CO J=1-0 and J=2-1 line observations. We discuss the correlation of the shocked molecular gas with the previously detected, shocked atomic gas and the associated infrared emission.Comment: 24 pages, 10 figures, To appear in the ApJ, scheduled for the April 10, 2001 issue (v551

    Hydrodynamical simulations of the jet in the symbiotic star MWC 560 III. Application to X-ray jets in symbiotic stars

    Full text link
    In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission line features which correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4 - 6.7 keV range which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will provide crucial for understanding jets in symbiotic stars.Comment: 10 pages, 12 figures, accepted for publication in ApJ, uses emulateap

    X-ray Emission Properties of Large Scale Jets, Hotspots and Lobes in Active Galactic Nuclei

    Full text link
    We examine a systematic comparison of jet-knots, hotspots and radio lobes recently observed with Chandra and ASCA. This report will discuss the origin of their X-ray emissions and investigate the dynamics of the jets. The data was compiled at well sampled radio (5GHz) and X-ray frequencies (1keV) for more than 40 radio galaxies. We examined three models for the X-ray production: synchrotron (SYN), synchrotron self-Compton (SSC) and external Compton on CMB photons (EC). For the SYN sources -- mostly jet-knots in nearby low-luminosity radio galaxies -- X-ray photons are produced by ultrarelativistic electrons with energies 10-100 TeV that must be accelerated in situ. For the other objects, conservatively classified as SSC or EC sources, a simple formulation of calculating the ``expected'' X-ray fluxes under an equipartition hypothesis is presented. We confirmed that the observed X-ray fluxes are close to the expected ones for non-relativistic emitting plasma velocities in the case of radio lobes and majority of hotspots, whereas considerable fraction of jet-knots is too bright at X-rays to be explained in this way. We examined two possibilities to account for the discrepancy in a framework of the inverse-Compton model: (1) magnetic field is much smaller than the equipartition value, and (2) the jets are highly relativistic on kpc/Mpc scales. We concluded, that if the inverse-Compton model is the case, the X-ray bright jet-knots are most likely far from the minimum-power condition. We also briefly discuss the other possibility, namely that the observed X-ray emission from all of the jet-knots is synchrotron in origin.Comment: 20 pages, 10 figures, accepted for publication in the Astrophysical Journal, vol.62

    On the metal abundances inside mixed-morphology supernova remnants: the case of IC443 and G166.0+4.3

    Full text link
    Recent developments on the study of mixed morphology supernova remnants (MMSNRs) have revealed the presence of metal rich X-ray emitting plasma inside a fraction of these remnant, a feature not properly addressed by traditional models for these objects. Radial profiles of thermodynamical and chemical parameters are needed for a fruitful comparison of data and model of MMSNRs, but these are available only in a few cases. We analyze XMM-Newton data of two MMSNRs, namely IC443 and G166.0+4.3, previously known to have solar metal abundances, and we perform spatially resolved spectral analysis of the X-ray emission. We detected enhanced abundances of Ne, Mg and Si in the hard X-ray bright peak in the north of IC443, and of S in the outer regions of G166.0+4.3. The metal abundances are not distributed uniformly in both remnants. The evaporating clouds model and the radiative SNR model fail to reproduce consistently all the observational results. We suggest that further deep X-ray observations of MMSNRs may reveal more metal rich objects. More detailed models which include ISM-ejecta mixing are needed to explain the nature of this growing subclass of MMSNRs.Comment: A&A in press. For journal style pdf file, http://www.astropa.unipa.it/Library/OAPA_preprints/fb10742.pd

    Creating Opportunities for Improving Lake-Focused Stakeholder Engagement: Knowledge–Action Systems, Pro-Environment Behavior and Sustainable Lake Management

    Get PDF
    Managers, policymakers, non-government organizations and community groups are increasingly relying on stakeholder participation to bolster lake management efforts. The growing portfolio of lake-focused stakeholder engagement cases offers valuable information about the efficacy of alternative stakeholder engagement strategies. While attention has been devoted to inventorying these instances, lesser emphasis has been given to evaluating the effectiveness of different participation and engagement approaches. There is arguably no panacea for involving stakeholders in lake and basin management. Lake management challenges in distinct natural and human systems necessitate diverse approaches for interacting with stakeholders. As calls for stakeholder participation increase and management budget constraints tighten, the urgency of exploring and documenting the effectiveness of alternative approach rises. This paper examines lake-focused stakeholder participation activities targeting individuals and households, summarizes and shares recent findings from research of knowledge–action processes and pro-environment behaviours, and offers encouragement and guidance for lake managers to create opportunities for improving lake-focused stakeholder engagement

    Discovery of a Hard X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG 0635+0521

    Get PDF
    We have discovered an x-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed x-ray flux is 1.2*10^-11 erg cm^-2 s^-1 in the 2-10 keV band. The x-ray spectrum is consistent with a simple powerlaw model with absorption. The photon index is 1.50 +/- 0.08 and we detect emission out to 40 keV. Optical observations identify a counterpart with a V-magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B type star. If the identification of the x-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray emitting x-ray binary.Comment: Accepted to the Astrophysical Journal, 8 page
    corecore