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Direct Autocrine Action of Insulin on b-Cells: Does It
Make Physiological Sense?
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In recent years there has been a growing interest in the possibility
of a direct autocrine effect of insulin on the pancreatic b-cell.
Indeed, there have been numerous intriguing articles and several
eloquent reviews written on the subject (1–3); however, the con-
cept is still controversial. Although many in vitro experiments,
a few transgenic mouse studies, and some human investigations
would be supportive of the notion, there exist different insights,
other studies, and circumstantial evidence that question the con-
cept. Therefore, the idea of autocrine action of insulin remains
a conundrum. Here we outline a series of thoughts, insights, and
alternative interpretations of the available experimental evidence.
We ask, how convincing are these, and what are the confusing
issues? We agree that there is a clear contribution of certain down-
stream elements in the insulin signaling pathway for b-cell function
and survival, but the question of whether insulin itself is actually
the physiologically relevant ligand that triggers this signal trans-
duction remains unsettled. Diabetes 62:2157–2163, 2013

ELEMENTS OF INSULIN SIGNALING PATHWAYS IN

b-CELLS ARE IMPORTANT

The insulin signal transduction pathway in pancreatic
b-cells is similar to that in most other cell types (Fig. 1).
We do not dispute evidence that insulin receptors are
expressed in b-cells. Moreover, it is generally accepted
that some elements in the “insulin signal transduction
pathways” play a critical role for b-cell survival, growth,
and general well-being (1–4). Perhaps the best example
comes from the global insulin receptor substrate (IRS)-1
and IRS-2 knockout mouse models, in which IRS-2 was
shown to play an especially vital role in the ability of
b-cells to compensate for insulin resistance (5–7). These
landmark studies were a catalyst to change previous
thinking in the diabetes research field. Before, the pre-
dominant thought was that insulin resistance was the main
cause of type 2 diabetes, but it was not widely acknowl-
edged until the 1990s that the onset of type 2 diabetes is
marked by a failure of the functional b-cell mass to meet the
metabolic demand (8–10). Back then, with the realization
that IRS-2 signaling in b-cells could be important, a plethora
of studies blossomed to indicate certain downstream

elements in IRS-2 signaling pathways also play important
roles in b-cell function and survival (Fig. 1) (4,8). IRS-2 is
critical because it is a highly regulated “gatekeeper” of islet
b-cell homeostasis. Its expression is increased by glucose,
incretins such as GLP-1, and other factors that increase
cytosolic [Ca2+]i and [cAMP]i in b-cells (11–13). By contrast,
it can be downregulated by proinflammatory cytokines,
physiological stress, and feedback inhibition of normal IRS
signaling (4,14–16). It is conceivable that the relatively high
expression of IRS-2 and its quick turnover in b-cells (13)
may offset any need for constitutive activity of the insulin
receptor, as it does in the liver (17). With a controlled
upregulation of IRS-2 when b-cell compensation is needed
to maintain glucose homeostasis and downregulation of
IRS-2 when b-cell compensation is not needed, the re-
sponsibility for insulin itself to trigger downstream signaling
in b-cells could be removed and placed more so on glucose,
incretins, neuronal connections, and other more physio-
logically relevant regulators of b-cell function.

However, despite this growing body of evidence for the
necessity of IRS-2–regulated signaling pathways in b-cells,
the identity of any physiologically relevant upstream ligand/
receptor interaction that triggers IRS signal transduction in
b-cells in vivo has been rather unclear. Of course, the in-
sulin/insulin receptor interaction is an attractive candidate,
but there are considerations and circumstances that raise
significant doubt of an autocrine effect of insulin on b-cells.
These are considered below.

WHAT CONCENTRATIONS OF INSULIN ARE ISLET

b-CELLS EXPOSED TO IN VIVO?

There is probably only one of two possibilities. Either the
b-cells are bathing in a very high concentration of locally
secreted insulin, or secreted insulin is rapidly dispensed
into the circulation leaving the locality of an islet but then
has to complete an entire lap around the body where it is
cleared by other tissues before returning to the b-cells at
a much lower concentration. The net result of these two
possibilities would likely be the same. A direct autocrine
biological effect of insulin on the b-cell in vivo is unlikely.

Why? Prolonged exposure to insulin, and/or high con-
centrations of insulin in all cells that express the insulin
receptor effectively desensitizes the IRS signaling pathway
downstream of the receptor as well as downregulates ex-
pression of insulin receptor itself (18). There is no reason
to think the b-cell is any different. Internalization of the
insulin receptor into an endosomal compartment, once
insulin is bound contributes to this desensitization re-
ducing the availability of cell-surface insulin receptors
(19). Some desensitization mechanisms are normal physi-
ological feedback inhibition aimed at preventing poten-
tially harmful effects of prolonged exposure to insulin such
as hypoglycemia and/or oncogenesis (18) (Fig. 2). Once
the insulin receptor is downregulated and downstream
signaling desensitized, some time without insulin is needed
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to restore normal insulin sensitivity (20,21). Considering
that the insulin receptor is ubiquitously expressed, such
feedback inhibition mechanisms provide a dynamic means
of locally controlling insulin receptor activity rather than

a more complex regulation of controlling insulin receptor
gene expression in a tissue-specific manner. Indeed, some
believe that the chronic hyperinsulinemia found in obesity
and obesity-linked type 2 diabetes can make a major

FIG. 1. Activation of the IRS signaling cascade pathways. A peptide ligand such as insulin or insulin-like growth factor-1 (IGF-1) binds to its receptor,
activating the intrinsic tyrosine kinase activity of that receptor that then tyrosine phosphorylates (pY) adaptor molecules such as IRS-1 or -2. Other
receptor tyrosine kinases, or receptors that activate tyrosine kinases such as Janus kinase (JAK), can also activate IRS signaling. This leads to
activation of two major signaling cascades, the Ras-Raf-mitogen-activated protein kinase (MAPK) pathway (orange) and the phosphatidylinositol-39-
kinase (PI3’K)/protein kinase-B (PKB; also known as Akt) signaling pathway (green). For the Ras-Raf-MAPK pathway, growth factor receptor–bound
protein-2 (Grb2)/son of sevenless (SOS) protein complex binds to specific phosphorylated tyrosines on IRS-1/2, activating the GTP/GDP exchange
activity of SOS, which loads p21

Ras
(Ras) with GTP to activate Ras, leading to phosphorylation of the serine/threonine protein kinase Raf-1, which

then phosphorylates the mitogen-activated protein kinase kinase (MEK1), which is then activated to phosphorylate the extracellular signal–
regulated kinases-1 and -2 (Erk-1/2). Phospho-activated Erk-1/2 can then directly (or indirectly via phospho-activation of other kinases such as p90
ribosomal serine kinase [p90

RSK
]) serine/threonine phosphorylate certain transcription factors, such as cFos and E-twenty-six–like transcription

factor 1 (Elk-1), to upregulate gene transcription. Phospho-activated Erk-1/2 can also phosphorylate MAPK–interacting kinase (Mnk) 1 and 2,
leading to phosphorylation activation of the eukaryotic initiation factor-4e (eIF4e) in a complex also containing eIF4a and eIF4G to increase general
protein synthesis at the level initiation phase of translational control. For the PI3’K/PKB signaling pathway, the p85 regulatory subunit of PI3’K docks
to other specific phosphorylated tyrosine sites on IRS-1/2 that then activates its p110 catalytic activity. This catalyzes the phosphorylation of
phosphatidylinositol-4, 5-bisphophaste [PI(4,5)P2] to phosphatidylinositol-3, 4, 5-trisphophaste [PI(3,4,5)P3], which then activates 3-phosphoinositide
dependent protein kinase-1 (PDK1). PDK1 then threonine (pT) phosphorylates PKB for PKB activation, which can be amplified by serine phos-
phorylation (pS) of PKB by the target of rapamycin complex-2 (TORC2; which includes the protein kinase, mammalian target of rapamycin [mTOR]
and associated proteins rictor and mLST8). PKB has a plethora of serine/threonine phosphorylation substrates. PKB-mediated phosphorylation of the
tuberous sclerosis protein-1/2 complex (TSC1/2) inhibits its GTPase activating protein activity to then load the Ras homolog enriched in brain (Rheb)
protein with GTP (RhebGTP), leading to activation of the TORC1 (which includes mTOR and associated proteins raptor and mLST8). TORC1 can then
serine/threonine phosphorylate a series of substrates. This includes the eIF4e-binding protein-1 (4e-BP1) that releases it from eIF4e binding, enabling
eIF4e to associate with eIF4a and eIF4G in a complex with Mnk, where Mnk then phosphorylates eIF4e to increase rates of protein synthesis
translation. This also shows how the Ras/Raf/Erk and PI3’K/PKB signaling pathways can coordinate to give a tight translational control of protein
synthesis. TORC1 can also phosphorylate and subsequently activate p70 S6-ribosomal kinase (p70S6K), which can lead to an increase in the elongation
phase of protein synthesis translation. PDK1 can threonine phosphorylate p70

S6K
to amplify this effect. TORC1 also phosphorylates Unc-51–like

kinases-1/2 (ULK-1/2; also known as autophagy gene-1), which results in inhibition of autophagy. Among PKB’s other phosphorylation substrates are
proteins involved in the apoptotic process such as Bcl-antagonist of cell death (BAD) and X-linked inhibitor of apoptosis protein (XIAP), outlining
a mechanism whereby PKB is antiapoptotic. PKB phosphorylation of the transcription factors FoxO1 and FoxO3a causes their removal from the
nucleus and promotes their degradation, causing an inhibition of FoxO1/3a-mediated transcription. Phosphorylation of glycogen synthase kinase-3
(GSK3) by PKB inhibits GSK3 activity, resulting in increased glycogen deposition and cell growth. Under certain circumstances, PKB can also in-
fluence increases in cell growth by phosphorylating the cell-cycle inhibitor proteins p21 cyclin-dependent kinase inhibitor-1 (p21

CIP
) and p27 cyclin-

dependent-kinase inhibitor (p27KIP). PKB can also phosphorylate-inhibit phosphodiesterase-3b (PDE3b) to elevate intracellular cAMP ([cAMP]i)
levels. Many of these IRS signaling elements have been shown to be expressed and active and play important roles in pancreatic b-cells in terms of
certain functions, growth, and survival (rev. in 2–4), and these are indicated by a yellow highlighted halo.
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contribution to the insulin-resistant state because of these
desensitization mechanisms (18) (Fig. 2).

The concentration of insulin secreted from the pancreas
in vivo in response to physiological stimuli has been esti-
mated by measuring insulin concentrations in the portal
vein under normal circumstances and can reach high peak
concentrations of$5 nmol/L (22). As such, it is not too far-
fetched to assume that if insulin were not efficiently
cleared from the local islet milieu its concentration would

be at least equally as high, if not higher. Considering that
significant insulin receptor downregulation in insulin-
targeted primary cells has been observed at lower insulin
concentrations of #1 nmol/L (23), it is quite possible that
the insulin receptor in b-cells may be permanently down-
regulated if insulin is not effectively cleared. In support of
this idea, recent in vivo studies in normal mice have in-
dicated that despite a marked effect of insulin in the liver
to activate molecular targets, such as sterol regulatory

FIG. 2. Feedback inhibition of IRS signaling cascade pathways. Once insulin has activated IRS signal transduction pathways in cells, after a period
of time there are internal physiological feedback inhibition signals (indicated by red arrows) that ensure that the “insulin signal” is not chronically
sustained. Under hyperinsulinemic conditions, this feedback results in chronic desensitization of IRS signal transduction and contributes to the
insulin-resistant state. Downstream activation of extracellular signal–regulated kinases-1 and -2 (Erk-1/2) (as described in Fig. 1) can lead to Erk-
1/2 protein kinase–mediated serine phosphorylation (pS) of IRS-1/2, which results in dissociation of the insulin receptor and IRS-1/2 interaction
together with IRS-1/2 degradation. This is one route of delayed feedback inhibition of insulin signaling. 3-Phosphoinositide-dependent protein
kinase-1 (PDK1) activation can result in downstream activation atypical protein kinase-C (PKC) isoforms, such as PKCz, which can also serine
phosphorylate (pS) IRS-1/2 to promote their degradation, representing another route of delayed feedback inhibition for insulin signal trans-
duction. In contrast, protein kinase-B (PKB; also known as Akt) can serine phosphorylate IRS-1/2 at alternative sites to stabilize IRS-1/2 tyrosine
phosphorylation state and thus enhance downstream signaling. However, PKB-mediated phosphorylation activation of some of its other substrates
can have a more dominant-negative feedback effect on IRS signaling. Both target of rapamycin complex-1 (TORC1) and p70 S6-ribosomal kinase
(p70

S6K
) (the latter amplified by PDK1 phosphorylation) can serine phosphorylate IRS-1/2 to promote their degradation, which then dampens IRS

signaling. This denotes a third route for delayed feedback inhibition of insulin signaling. A fourth route may be via the Src-homology domain–
tyrosine phosphatase-2 (SHP2), which upon binding to certain phosphotyrosine residues on IRS-1/2 becomes activated and can then remove
phosphate from phosphotyrosines on IRS-1/2, thus dampening downstream signaling. FoxO1 and -3a have been shown to be critical factors for
driving IRS-2 expression under basal conditions, especially FoxO3a in b-cells (15). But when IRS signaling is triggered by insulin, FoxO1/3a
transcriptional activity is inactivated, resulting in another route of temporal feedback inhibition by decreasing IRS-2 expression. Several of these
IRS signaling feedback mechanisms have indeed been shown to be present in pancreatic b-cells (2–4,15,16). Another consideration for feedback
inhibition of insulin action is that when insulin binds to its receptor, the insulin/insulin receptor complex is internalized into the cell where it
dissociates in an endosomal compartment, allowing the “free” insulin receptor to return to the surface (18,19). When insulin levels are high, this
cycle is biased toward there being minimal insulin receptors on the surface of the cell with the majority being internalized, and acts as an addi-
tional physiological mechanism to prevent prolonged activation of IRS signal transduction by insulin. Under chronic hyperinsulinemia, insulin
receptor internalization makes a contribution to insulin resistance. This long-term hyperinsulinemia also leads to downregulation of insulin re-
ceptor gene expression by a mechanism not yet well defined.
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element binding protein-1c, there is a negligible, if any,
effect of insulin on islet b-cells in the very same animal at
the same time (15).

However, an alternative view is that secreted insulin is
rapidly cleared from the islet locale. In favor of this sce-
nario is the fact that pancreatic islets have an extensive
microcirculatory network that is required for normal b-cell
secretory function. In rodents, the islet microcirculation
favors blood flow away from b-cells passing by the other
pancreatic endocrine islet cell types (including glucagon-
producing a-cells and somatostatin d-cells) on exiting the
islet (24). It is thought by some that this unidirectional
b-cell → a-cell → d-cell communication may be involved in
coordinate downregulation of glucagon secretion as well
as preventing local accumulation of somatostatin to inhibit
insulin and glucagon secretion. Although human islet cell
architecture is different from that in rodents, the same
directional plumbing of the islet microcirculatory network
is retained in humans (25). Islet b-cells are also polarized,
which enables them to effectively secrete insulin into the
venous islet microcirculation from where it can be readily
cleared from the islet milieu (26). If insulin is efficiently
dispersed away from the islet then it will be extracted from
the circulation by the whole body before returning to the
islet via the pancreatic artery at low peripheral picomolar
concentrations (27). Such a depleted concentration of in-
sulin could be ineffective to transduce IRS signaling in
b-cells, which needs to be at $50 nmol/L as indicated from
in vitro experiments using primary islet b-cells (2,3).

It has been argued that there is always a degree of
constitutive (unregulated) insulin secretion from normal
islet b-cells, and this is continually acting as a local auto-
crine ligand for the insulin receptor (1–3). But this obser-
vation is derived from dedifferentiated tumorigenic b-cell
lines and transfection of the preproinsulin gene to pituitary
cells, and thus it is not necessarily physiologically relevant.
In fact, normal primary islet b-cells efficiently sort.99% of
the newly synthesized (pro)insulin to the regulated path-
way and there is negligible, if any, constitutive secretion
(28). Notwithstanding this, even if there were constitutive
insulin secretion from b-cells, the same two scenarios
described above would still apply for a negligible autocrine
effect of insulin on b-cells.

INFLUENCE OF THE CENTRAL NERVOUS SYSTEM ON

b-CELL FUNCTION IN VIVO

Both sympathetic and parasympathetic input from the
central nervous system (CNS) can affect b-cell function
(29). Positive parasympathetic neurotransmitter signals,
such as acetylcholine (operating through muscarinic [M3]
receptors on b-cells [30]), vasoactive intestinal polypeptide,
and pituitary adenylate cyclase-activating polypeptide
(31), can enter via the vagus to potentiate glucose-induced
insulin secretion (30,31). Conversely, some negative
effects to inhibit glucose-induced insulin secretion can be
transmitted via sympathetic nerves (32). In the pancreas,
the vast majority of neurons associate with pancreatic
islets (33). Although it has been suggested that the neu-
ronal connections to pancreatic islets are to endothelial
cells (34), it is nonetheless clear that the CNS can have
a major influence on the functional regulation on b-cells
(29,32). Indeed, severing the vagus nerve can significantly
impair glucose-induced insulin secretion (29). In addition,
an insulin-induced feedback inhibition of glucose-induced
insulin secretion found in vivo is lost when the pancreas is

denervated, including in humans (35–37). It has been
suggested that a prior exposure to exogenous insulin can
enhance subsequent stimulation of endogenous insulin
secretion by glucose in humans in vivo (38,39). Although
this could be consistent with a direct “priming effect” of
insulin on the b-cell, an alternative explanation could be
that a prior exposure to exogenous insulin downregulates
and desensitizes insulin receptor signaling in the brain
(18). If so, the insulin-induced feedback inhibition of glu-
cose-induced insulin secretion would be less effective. As
a consequence, mitigating this negative CNS regulation en-
hances endogenous insulin secretion. Indeed, an inadequate
feedback inhibition of insulin on endogenous insulin secre-
tion has been observed in obese/insulin-resistant humans
and is thought to play a role in maintaining the persistent
hyperinsulinemia under such circumstances (36).

Although the CNS influence on pancreatic b-cell func-
tion is often underestimated, it is attracting renewed in-
terest. Some investigators even suggest that endogenously
produced incretins may, at least in part, exert their effect
on b-cells via the CNS (40,41). Intriguingly, compensatory
increases in b-cell mass and function may be somewhat
controlled via the CNS (42,43). Indeed, in vagotomized
rats, rates of b-cell proliferation decrease by half, which is
associated with an ;80% reduction in protein kinase-B
(PKB; also known as Akt) activation, a key element in IRS
signaling pathways (Fig. 1) (43). This in turn suggests that
the CNS may have a degree of control over IRS-2–regulated
signal transduction in b-cells.

However, it is noted that direct intracerebroventricular
administration of insulin into the CNS does not affect cir-
culating insulin levels, but does suppress food intake and
decrease body weight (44). Although this is an intriguing
observation, it relies on a pharmacological route for in-
sulin delivery and does not reflect the physiological route
by which insulin communicates with the CNS via the cir-
culation (44). Despite the evidence that some aspects of
b-cell function can be neuronally influenced, this remains
a rather gray area in terms of understanding the mecha-
nism. Further research is needed, especially in regard to
identifying the specific regions of the CNS that directly
communicate to the endocrine pancreas. But in terms of
understanding the possible influence of insulin itself on the
b-cell in vivo, it seems that this may not necessarily be
a direct autocrine effect but rather a secondary one me-
diated in the large part via the CNS.

CENTRAL ISSUES WITH “b-CELL–SPECIFIC”

TRANSGENIC KNOCKOUT MODELS

There are now several transgenic rodent models that imply
the need for many of the elements of the IRS-2 signaling
pathway for b-cell function, growth and/or survival (Fig. 1)
(2,3,14). But a critical question is what is the physiologi-
cally relevant ligand that activates IRS signaling pathways?
Is it insulin itself? Perhaps closely related insulin-like
growth factor 1 (IGF-1)? Or a combination of both? Enticing
transgenic mouse models in which the insulin receptor and/
or the IGF-1 receptor genes have been knocked out in an
intended b-cell–specific manner have been presented (45–47).
Intriguingly, deleting the insulin receptor from b-cells in
this manner (bIRKO mice) results in modest glucose
intolerance, elevated fasting insulin levels and impaired
glucose-induced first-phase insulin secretion (45). Like-
wise, deleting the IGF-1 receptor by the same technical
approach (bIGF1r mice) reveals a similar phenotype (46).
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Cross-breeding these two mouse models deletes the
receptors for insulin and IGF-1 on b-cells (bDKO mice),
rendering a more severe diabetic phenotype with apparent
loss of b-cell secretory capacity and function, together
with elevated glucagon levels in the fed state (47). Such
unregulated glucagon release would likely be a major
contributor to the hyperglycemic state of these double-
knockout (bDKO) animals.

These data were very intriguing at the time, but recently
the technical approach used to generate these transgenic
mouse models has been questioned (48,49). The short form
of the rat insulin gene promoter (RIP) used to drive a Cre-
recombination to generate the b-cell–specific knockout of
the insulin and/or IGF-1 receptor genes is unlikely to be
exclusively b-cell specific (45–47). Indeed, many of the
RIPs and other b-cell transcription factor (e.g., Pdx1) gene
promoters cannot be considered b-cell specific because
they also drive quite significant Cre-expression in several
regions of the brain, including the hypothalamus (48,49).
Moreover, the RIP-Cre mice themselves display mild glu-
cose intolerance, apparently owing to Cre-impaired first-
phase insulin secretion (50). As previously outlined, the
CNS can have a major influence on metabolic homeostasis,
including pancreatic endocrine cell functions involving the
b-cell. As such, while it is likely that any potential feed-
back effect of insulin and/or IGF-1 on the b-cell is blocked
in these animal models, it cannot be ruled out that the
primary defect driving the phenotype of the bIRKO,
bIGF1r, or bDKO mice originates in the CNS and that the
b-cells respond secondarily to dysfunctional CNS control
(51). In this regard, there are now multiple studies in
which knocking out a gene using a RIP-Cre or Pdx1-Cre
transgenic approach gave an obese, hyperphagic, or met-
abolically altered phenotype that has been primarily at-
tributed to deleting that gene in the brain/hypothalamus
rather than the b-cell (48,49). In these instances, any ap-
parent b-cell defect might be secondary to obesity or
changes in metabolic homeostasis controlled by the CNS.
However, technology has progressed, and there is now
a new transgenic mouse model in which the full-length (8
kb) mouse insulin promoter drives Cre-expression, ap-
parently in b-cells only (46). Future use of this “MIP-CreER
mouse” to uniquely delete insulin and/or IGF-1 receptors in
b-cells may move toward resolving some of the contro-
versy behind autocrine action of insulin.

DOES INSULIN AFFECT INSULIN GENE EXPRESSION IN

VIVO?

Yes, but not necessarily in a direct autocrine manner. In
vivo it has been known for more than 70 years that ad-
ministration of exogenous insulin depletes the pancreas of
its insulin stores (52). This is often interpreted as a nega-
tive effect of insulin on insulin gene expression (2). How-
ever, this is more likely due to the infused insulin lowering
the blood glucose to a hypoglycemic state, which is known
to deplete endogenous insulin stores and downregulate
insulin gene expression (53,54). Insulin gene expression is
markedly downregulated under starvation conditions, but
then rapidly recovers upon refeeding—an effect likely dri-
ven primarily by the circulating glucose levels (53). A glu-
cose infusion administered to fasted rats is sufficient to
drive increases in insulin gene transcription (55). However,
if the glucose concentration is clamped in vivo, subsequent
insulin infusion to induce hyperinsulinemia can partly re-
duce insulin gene expression (56), but it remains unclear

whether this is a direct effect of insulin on the b-cell or one
acting secondarily via the CNS. In hyperglycemic states in
vivo, insulin gene expression does not appear to drastically
vary at the level of the b-cells. Although insulin gene ex-
pression appears reduced in pancreata from type 2 diabetic
rodent models, this can be correlated with loss of b-cell
mass rather than any relation to hyperinsulinemia (57,58). It
should be noted that preproinsulin mRNA levels are not
only transcriptionally regulated, but also at the level of
preproinsulin mRNA stability. Indeed, physiologically rele-
vant increases in glucose stabilize preproinsulin mRNA, but
this does not appear to be mediated by a local autocrine
feedback of secreted insulin (59).

Recently however, there has been a series of in vitro
studies using transformed b-cell lines or isolated islets to
suggest, in contrast to established in vivo studies, that there
is a positive effect of insulin to drive insulin gene expression
(2). These in vitro studies have been complemented by
experiments using islets isolated from the aforementioned
bIRKO and bIGF1r transgenic mice (45–47). However, in
these particular mouse models, there could well be a CNS
influence on the islets of these animals which alters their
b-cell mass (42,43,48,49,51) and, as previously observed,
preproinsulin mRNA levels parallel these changes (57). In
short, none of these in vitro studies can readily place the
potential of insulin itself directly regulating its own gene
expression into a proper physiological context. There is
some indication that elements in the insulin signaling
pathway in b-cells, such as FoxO1 are involved in influ-
encing insulin gene expression in b-cells (4). However,
whether these elements are directly controlled by an in vivo
autocrine feedback action of insulin is not established.

DOES INSULIN AFFECT INSULIN PRODUCTION?

The major regulation of insulin production in normal pan-
creatic b-cells occurs at the translational level (60). Fluc-
tuation in glucose concentrations is the main instigator of
this control, but it can be supplemented by other nutrients
and incretin peptides (60). When primary b-cells are ex-
posed to a stimulatory glucose concentration there is a 20-
to 30-min lag period (due to recruitment of preproinsulin
mRNA containing polyribosome complexes to the rough
endoplasmic reticulum, the site of proinsulin biosynthesis)
before increases in proinsulin biosynthesis are observed,
that can then reach an impressive ;10-fold increase by 60
min. Glucose-induced translational control is unique to
b-cells and specifically directed at proinsulin and the bio-
synthesis of a subset of;50 secretory granule proteins (60).
It ensures that insulin stores in b-cells are rapidly replen-
ished after a bout of insulin exocytosis. The molecular
mechanism for specific glucose-induced translational regu-
lation of proinsulin biosynthesis is quite distinct from that
for glucose-stimulated insulin secretion (60). For example,
unlike Ca2+-dependent regulated insulin secretion, transla-
tional control of proinsulin biosynthesis is Ca2+-independent
(60). Many studies have ruled out an autocrine positive
feedback of insulin to drive proinsulin biosynthesis (59–61),
but some have been a proponent of this possibility (62,63).
Unfortunately, studies that indicate a positive effect of in-
sulin to stimulate proinsulin biosynthesis are questionable
because proinsulin biosynthesis was either not measured
directly, or if it was only during the initial 30-min lag period
after introduction of the stimulus, and as such these mea-
sures are inaccurate (62,63). Without an extended incuba-
tion period up to 60 min, the mechanics for translational
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control of proinsulin biosynthesis cannot be fully appreci-
ated (60). Thus, the vast majority of evidence indicates that
insulin does not have an autocrine effect on its own pro-
duction in the b-cell.

DOES INSULIN AFFECT INSULIN SECRETION?

As previously noted, there is an in vivo temporal negative
feedback of insulin on stimulated insulin secretion that is
mediated via the CNS in humans (35–37). However, there
is an intriguing suggestion that insulin may also have
a positive effect to enhance its own secretion (1–3). Cor-
roborating evidence for this has been indicated in humans
in vivo (38). But an alternative explanation could be that
the effect was mainly mediated via alleviating the negative
feedback of insulin through the CNS (36), as previously
discussed. Yet, the majority of studies arguing for a posi-
tive autocrine effect of insulin to drive insulin secretion
have been conducted in vitro where central control no
longer operates, or in transgenic mouse models where
a primary effect of insulin in the CNS to which b-cells act
secondarily cannot be ruled out (1,2,51). Thus, an in vivo
positive autocrine effect of insulin on the b-cell remains
questionable. But in our minds, a feed-forward positive
effect of insulin on insulin secretion from the b-cell does
not make sense physiologically. If this were the case, the
more insulin secreted the bigger the autocrine stimulus
would be for further insulin secretion, which would for-
ever be increasing with time and eventually have serious
deleterious consequences. In this scenario, it would be
difficult to see how insulin secretion would be efficiently
shut off to critically avoid hypoglycemia. One could con-
sider the temporal feedback loops in insulin signaling (Fig.
2), or “natural” protective insulin resistance (18), would be
expected to control this, but such built-in “off mecha-
nisms” take time (a few hours) to be effective (20,21). In
contrast, it is established that upon removal of a stimulus,
such as glucose, insulin secretion returns to basal levels in
minutes. As such, in the in vivo physiological context, it
seems unlikely that insulin itself will modulate local insulin
secretion.

FINAL THOUGHTS AND CONCLUSIONS

We have no disagreement that multiple downstream ele-
ments of the insulin signal transduction pathway are crit-
ical for normal b-cell function, growth, survival, and
general well-being (Fig. 1). We believe this is established.
However, our thoughts and alternative interpretations
have led us to believe that autocrine action of insulin is not
established, especially when considering the in vivo phy-
siological context. If insulin is not the appropriate ligand
for b-cells, then what might be the relevant one? IGF-1? We
mentioned doubts about this previously, but also note that
in obesity/insulin resistance, when b-cell mass and func-
tion may increase in compensation, IGF-1 binding proteins
also increase, which would actually decrease the “free”
effective concentration of IGF-1. So, perhaps it is not IGF-1
either. An intriguing possibility might be IGF-2, which has
been proposed to be cosecreted with insulin in response to
incretins, and has an “autocrine feedback” action via the
IGF-1 receptor (64). However, this hypothesis is mostly
based on in vitro observations and requires in vivo testing
to substantiate. Moreover, a possible autocrine feedback
of IGF-2 on b-cells is also subjected to the same arguments
of desensitization made here for insulin, so the jury should

still be out on IGF-2 for the time being. Another consid-
eration is that a homologous ligand may not be necessary
at all, and it is the tight control of IRS-2 expression in
b-cells through the action of many heterologous factors
that acts as a gatekeeper to control downstream b-cell
homeostasis (11–17). Moreover, the CNS may drive com-
pensatory increases in b-cell function and mass in response
to obesity/insulin resistance (42,43). However, there are
also a plethora of other untested growth factor ligand
candidates to consider that could act on the b-cell which,
via their specific receptor, could induce tyrosine kinase
activity to engage IRS adapter molecules to then transduce
downstream signaling (Fig. 1). Future studies may validate
such other ligands.

In conclusion, the question that insulin is the physio-
logically relevant molecule responsible for autocrine reg-
ulation of the b-cell is still open. Doubts and issues remain
that are currently difficult to answer convincingly, how-
ever as new technologies emerge these could be better
addressed experimentally in the near future. But, for the
moment, we prefer use of the term “IRS signal transduction/
signaling pathway” rather than “insulin signal transduction/
signaling pathway” in reference to elements of these sig-
naling networks in b-cells. This will avoid the implication
that autocrine action of insulin in vivo is established, when
in many quarters it is suggested that the concept remains
unproven.
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