61 research outputs found

    The yellow European eel (Anguilla anguilla L.) may adopt a sedentary lifestyle in inland freshwaters

    Get PDF
    We analysed the movements of the growing yellow phase using a long-term mark–recapture programme on European eels in a small catchment (the Frémur, France). The results showed that of the yellow eels (>200 mm) recaptured, more than 90% were recaptured at the original marking site over a long period before the silvering metamorphosis and downstream migration. We conclude that yellow European eels >200 mm may adopt a sedentary lifestyle in freshwater area, especially in small catchment

    The evolving story of catadromy in the European eel (Anguilla anguilla)

    Get PDF
    Anguillid eels were once considered to be the classic example of catadromy. However, alternative life cycles have been reported, including skipping the freshwater phase and habitat shifting between fresh, brackish, and saltwater throughout the growth phase. There is a lack of knowledge regarding these alternate life strategies, for example, the proportion of individuals in the population that adopt them compared to classic catadromy. We provide a description of these alternate life cycle strategies in temperate anguillids, their possible drivers, and the methods available to investigate them. These methods (lethal and non-lethal), include otolith microchemistry, fatty acid and stable isotope analyses, parasite identification, blood transcriptomics, and electronic tags. We argue that since the current management framework for the European eel and other temperate eels is based mainly on the freshwater component of the population, it ignores eels growing in saline waters. Many of the factors that are thought to be responsible for the precipitous decline of the eel population are more prevalent in freshwater systems. Therefore, the contribution of saline eels may be more important than currently estimated. The habitat-shifting ability of eels may be all the more crucial for the persistence and recovery of those species that are endangered

    Dietary effects on multi-element composition of European eel (Anguilla anguilla) otoliths

    Get PDF
    Otolith microchemistry is widely used as a tool to track individual migration pathways of diadromous fish under the assumption that the elemental composition of fish otoliths is directly influenced by the physicochemical properties of the surrounding water. Nevertheless, several endogenous factors are reported to affect element incorporation into fish otoliths and might lead to misinterpretations of migration studies. This study experimentally examined the influence of eight different diets on the microchemical composition of European eel (Anguilla anguilla) otoliths using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Seven natural prey types and one artificial diet were fed during 8 weeks in freshwater circuits. Results show for the first time that food has no significant influence on the incorporation of Na, Sr, Ba, Mg, Mn, Cu and Y into European eel otoliths. This indicates that the incorporation of elements usually chosen for migration studies is not affected by diet and that individual feeding behaviour of A. anguilla will not lead to any misinterpretation of migration pathways

    The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis

    Full text link
    [EN] Estradiol (E-2) can bind to nuclear estrogen receptors (ESR) or membrane estrogen receptors (GPER). While mammals possess two nuclear ESRs and one membrane GPER, the European eel, like most other teleosts, has three nuclear ESRs and two membrane GPERs, as the result of a teleost specific genome duplication. In the current study, the expression of the three nuclear ESRs (ESR1, ESR2a and ESR2b) and the two membrane GPERs (GPERa and GPERb) in the brain-pituitary-gonad (BPG) axis of the European eel was measured, throughout spermatogenesis. The eels were first transferred from freshwater (FW) to seawater (SW), inducing parallel increases in E2 plasma levels and the expression of ESRs. This indicates that salinity has a stimulatory effect on the E-2 signalling pathway along the BPG axis. Stimulation of sexual maturation by weekly injections of human chorionic gonadotropin (hCG) induced a progressive decrease in E-2 plasma levels, and different patterns of expression of ESRs and GPERs in the BPG axis. The expression of nuclear ESRs increased in some parts of the brain, suggesting a possible upregulation due to a local production of E-2. In the testis, the highest expression levels of the nuclear ESRs were observed at the beginning of spermatogenesis, possibly mediating the role of E2 as spermatogonia renewal factor, followed by a sharply decrease in the expression of ESRs. Conversely, there was a marked increase observed in the expression of both membrane GPERs throughout spermatogenesis, suggesting they play a major role in the final stages of spermatogenesis.Funded by the Spanish Ministry of Science and Innovation (REPRO-TEMP project; AGL2013-41646-R) and IMPRESS (Marie Sklodowska-Curie Actions; Grant agreement no: 642893). M.C. Vilchez has a predoctoral grant from UPV PAID Programme (2011-S2-02-6521), M. Morini has a predoctoral grant from Generalitat Valenciana (Programa Grisolia). D.S. Penaranda was supported by MICINN and UPV (PTA2011-4948-1).Morini, M.; Peñaranda, D.; Vilchez Olivencia, MC.; Tveiten, H.; Lafont, A.; Dufour, S.; Pérez Igualada, LM.... (2017). The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology. 203:91-99. doi:10.1016/j.cbpa.2016.08.020S919920

    Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers

    Get PDF
    Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link

    A synthesis of the ecological processes influencing variation in life history and movement patterns of American eel: towards a global assessment

    Full text link

    EvEel : un modèle basé sur l'écologie évolutive pour explorer le rôle de la plasticité phénotypique comme réponse adaptative à la variabilité environnementale chez l'anguille

    No full text
    International audienceAnguilla anguilla, A. japonica and A. rostrata are three largely distributed catadromous and semelparous species characterized by a long and passive oceanic larval drift between their marine spawning grounds and their nursery areas in continental waters. Their large and spatially heterogeneous environments combined with population panmixia and long and passive larval drift impair the possibility of local adaptation and favour the development of phenotypic plasticity. In this context, we develop EvEel, a model that aims at exploring the role of phenotypic plasticity as an adaptive response of eels. Results suggest that the spatial patterns in terms of sex ratio, length atsilvering and habitat use observed at both the distribution area and the river catchment scales may actually be the result of three adaptive mechanisms to maximize individual fitness in spatially structured environments. We think that considering phenotypic plasticity as a paradigm is required to develop appropriate models for this species
    corecore