100 research outputs found

    Visual Data Mining

    Get PDF
    Occlusion is one of the major problems for interactive visual knowledge discovery and data mining in the process of finding patterns in multidimensional data.This project proposes a hybrid method that combines visual and analytical means to deal with occlusion in visual knowledge discovery called as GLC-S which uses visualization of n-D data in 2D in a set of Shifted Paired Coordinates (SPC). A set of Shifted Paired Coordinates for n-D data consists of n/2 pairs of common Cartesian coordinates that are shifted relative to each other to avoid their overlap. Each n-D point A is represented as a directed graph A* in SPC, where each node is the 2D projection of A in a respective pair of the Cartesian coordinates. The proposed GLC-S method significantly decrease cognitive load for analysis of n-D data and simplify pattern discovery in n-D data. The GLC-S method iteratively splits n-D data into non-overlapping clusters (hyper-rectangles) around local centers and visualizes only data within these clusters at each iteration. The requirements for these clusters are to contain cases of only one class and be the largest cluster with this property in SPC visualization. Such sequential splitting allows: (1) avoiding occlusion, (2) finding visually local classification patterns, rules, and (3) combine local sub-rules to a global rule that classifies all given data of two or more classes. The computational experiment with Wisconsin Breast Cancer data(9-D), User Knowledge Modeling data(6-D), and Letter Recognition data(17-D) from UCI Machine Learning Repository confirm this capability. At each iteration, these data have been split into training (70%) and validation (30%) data. It required 3 iterations in Wisconsin Breast Cancer data, 4 iterations in User Knowledge Modeling and 5 iterations in Letter Recognition data and respectively 3, 4, 5 local sub-rules that covered over 95% of all n-D data points with 100% accuracy at both training and validation experiments. After each iteration, the data that were used in this iteration are removed and remaining data are used in the next iteration. This removal process helps to decrease occlusion too. The GLC-S algorithm refuses to classify remaining cases that are not covered by these rules, i.e.,., do not belong to found hyper-rectangles. The interactive visualization process in SPC allows adjusting the sides of the hyper-rectangles to maximize the size of the hyper-rectangle without its overlap with the hyper-rectangles of the opposing classes. The GLC-S method splits data using the fixed split of n coordinates to pairs. This hybrid visual and analytical approach avoids throwing all data of several classes into a visualization plot that typically ends up in a messy highly occluded picture that hides useful patterns. This approach allows revealing these hidden patterns. The visualization process in SPC is reversible (lossless). i.e.,., all n-D information is visualized in 2D and can be restored from 2D visualization for each n-D case. This hybrid visual analytics method allowed classifying n-D data in a way that can be communicated to the user’s in the understandable and visual form

    Adiabatic passage and ensemble control of quantum systems

    Full text link
    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol -- chirped pulse -- practiced by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with badly known coupling strengths. Such adiabatic control protocols are illustrated by simulations achieving all 24 permutations for a 4-level ladder

    Appropriate control methods for mobile virtual exhibitions

    Get PDF
    It is becoming popular to render art exhibitions in Virtual Reality (VR). Many of these are used to deliver at-home experiences on peoples’ own mobile devices, however, control options on mobile VR systems are necessarily less flexible than those of situated VR fixtures. In this paper, we present a study that explores aspects of control in such VR exhibitions - specifically comparing ‘on rails’ movement with ‘free’ movement.We also expand the concept of museum audio guides to better suit the VR medium, exploring the possibility of embodied characterguides. We compare these controllable guides with a more traditional audio-guide. The study uses interviews to explore users’ experience qualitatively, as well as questionnaires addressing both user experience and simulator sickness. The results suggest that users generally prefer to have control over both their movement and the guide, however, if relinquishing movement control, they prefer the uncontrolled guide. The paper presents three key findings: (1) users prefer to be able to directly control their movement; (2) this does not make a notable difference to simulator sickness; (3) embodied guides are potentially a good way to deliver additional information in VR exhibition settings

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    Get PDF
    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority

    Defining a Design Space for Persuasive Cooperative Interactions in Mobile Exertion Applications

    No full text

    Smooth optimal synthesis for infinite horizon variational problems

    Get PDF
    We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for 1-dimensional problems

    Acquisition and retention of spatial knowledge through virtual reality experiences: Effects of VR setup and locomotion technique

    No full text
    The fidelity level of virtual reality (VR) setups can affect different aspects of virtual experiences, but its effects on knowledge acquisition and retention need clarification. The two studies in this paper focus on spatial knowledge. The first study compared three VR setups, one using a VR headset and two using a tablet, differing in display and interaction fidelity. Since the type of virtual environment (VE), and the locomotion technique employed to explore it, might affect spatial knowledge acquisition, we studied each setup in an indoor and an outdoor VE with two widely used locomotion techniques (teleport and steering). Results showed that setups offering higher display and interaction fidelity can improve acquisition of spatial knowledge in terms of distance estimations (with teleport in the indoor VE, and with steering in the outdoor VE) and object-to-object spatial relations (with steering in the outdoor VE), but not in terms of object locations. This can provide guidance about how to choose the appropriate combination of setup and locomotion technique based on the type of VE and the types of spatial knowledge to acquire. Moreover, sickness and usability results showed that VR headset was more usable than tablet, and suggest using teleport on VR headset and steering on tablet. Therefore, the second study focused on VR headset with teleport and tablet with steering, and extended the assessment of their effects to spatial knowledge retention after two weeks. Results showed that spatial knowledge decreased in both conditions, but the VR headset with teleport led to better acquisition and 2-weeks retention of distance estimations
    corecore