267 research outputs found

    Molecular diversity of dolphinfish (Coryphaena hippurus) shows the merging of endemic and widespread haplotypes in the Mediterranean Sea

    Get PDF
    Molecular data on Coryphaena hippurus (Linnaeus, 1758) from western and central Mediterranean Sea were reported and compared. The aim of the study was to study the mitochondrial molecular structuring of the species at different geographical scales: localities, sub-basins, and oceans. Results show the absence of a sharp population structure inside the Mediterranean Sea, and the isolation of the Mediterranean dolphinfishes from those inhabiting the Atlantic Ocea

    Social welfare and profit maximization from revealed preferences

    Full text link
    Consider the seller's problem of finding optimal prices for her nn (divisible) goods when faced with a set of mm consumers, given that she can only observe their purchased bundles at posted prices, i.e., revealed preferences. We study both social welfare and profit maximization with revealed preferences. Although social welfare maximization is a seemingly non-convex optimization problem in prices, we show that (i) it can be reduced to a dual convex optimization problem in prices, and (ii) the revealed preferences can be interpreted as supergradients of the concave conjugate of valuation, with which subgradients of the dual function can be computed. We thereby obtain a simple subgradient-based algorithm for strongly concave valuations and convex cost, with query complexity O(m2/ϵ2)O(m^2/\epsilon^2), where ϵ\epsilon is the additive difference between the social welfare induced by our algorithm and the optimum social welfare. We also study social welfare maximization under the online setting, specifically the random permutation model, where consumers arrive one-by-one in a random order. For the case where consumer valuations can be arbitrary continuous functions, we propose a price posting mechanism that achieves an expected social welfare up to an additive factor of O(mn)O(\sqrt{mn}) from the maximum social welfare. Finally, for profit maximization (which may be non-convex in simple cases), we give nearly matching upper and lower bounds on the query complexity for separable valuations and cost (i.e., each good can be treated independently)

    The chemical and electrochemical oxidative polymerization of 2-amino-4-tert-butylphenol

    Get PDF
    [EN] Poly(2-amino-4-tert-butylphenol), poly(2A-4TBP), was synthesized from monomer aqueous solution using either electrochemical or chemical oxidation procedures. Several spectroscopic characterization techniques were employed to gain information on the chemical structure and redox behavior of the obtained materials. It was found that the chemical polymerization product could be described as an oligomer mixture containing up to 16 monomer units. In parallel to other polymers derived from o-aminophenol, phenoxazine rings constitute also the basic structure of poly(2A-4TBP). In addition, the occurrence of N-N couplings, which are favored by the presence of the voluminous tert-butyl substituent, seems also relevant. No significant structural differences were found between the chemically or electrochemically synthesized materials. © 2016 Published by Elsevier Ltd.Financial support from the Spanish Ministerio de Economía y Competitividad and FEDER funds (MAT2013-42007-P) and from the Generalitat Valenciana (PROMETEO2013/038) is gratefully acknowledged. M. Abidi thanks the Ministry of Higher Education and Scientific Research of Tunisia for funding her stay at the University of Alicante.Abidi, M.; López-Bernabeu, S.; Huerta, F.; Montilla-Jiménez, F.; Besbes-Hentati, S.; Morallón, E. (2016). The chemical and electrochemical oxidative polymerization of 2-amino-4-tert-butylphenol. Electrochimica Acta. 212:958-965. https://doi.org/10.1016/j.electacta.2016.07.060S95896521

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis

    Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties

    Get PDF
    Background: α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats. For its importance in lipid digestion, PL represents an attractive target for obesity prevention. Methods: The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also determined using 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power, phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the components of this essential oil. Results: The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D (49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%), bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at 2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one. Conclusion: The results revealed that the RaEO is a new promising potential source of antioxidant compounds, endowed with good practical applications for human health. Keywords: α-glucosidase, Antioxidant activity, Chemical composition, Pancreatic lipase inhibition, Rhaponticum acaule essential oil, Xanthine oxidase

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies
    corecore