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 Abstract  

Poly(2-amino-4-tert-butylphenol), poly(2A-4TBP), was synthesized from monomer aqueous 

solution using either electrochemical or chemical oxidation procedures. Several spectroscopic 

characterization techniques were employed to gain information on the chemical structure and 

redox behavior of the obtained materials. It was found that the chemical polymerization 

product could be described as an oligomer mixture containing up to 16 monomer units. In 

parallel to other polymers derived from o-aminophenol, phenoxazine rings constitute also the 

basic structure of poly(2A-4TBP). In addition, the occurrence of N-N couplings, which are 

favored by the presence of the voluminous tert-butyl substituent, seems also relevant. No 

significant structural differences were found between the chemically or electrochemically 

synthesized materials. 
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1. Introduction 

 

Aminophenols constitute an interesting class of compounds for electropolymerization 

owing to the presence of reactive amino and hydroxyl units. It has been reported that the 

relative position of these units at the aromatic ring plays a significant role in the 

electrochemical reactivity of the molecule and, consequently, the electrochemical behavior of 

the three positional aminophenol isomers, ortho-, meta- and para-, is quite different [1–3] . 

Despite some early controversy on the formation, or not, of polymeric films from the 

electrochemical oxidation of p-aminophenol, it seems now proved that in aqueous media the 

monomer can be electropolymerized to yield complex oligomeric products whose chemical 

structure is strongly dependent on the pH of the working solution [4]. The electro-oxidation of 

m-aminophenol has been scarcely investigated because it yields an electroinactive polymer 

that blocks the electrode surface and shows a crosslinked structure similar to polyphenol [3,5]. 

On the contrary, it is well documented that o-aminophenol can be electrochemically 

polymerized in acidic medium to yield an electroactive polymeric material that shows 

phenoxazine ladder structures [3,6]. It was also suggested that the products formed upon o-

aminophenol electrochemical oxidation depend on the pH of the polymerization solution [7] 

although it is worth noting that similar structure and properties can be obtained regardless of 

the polymerization method employed, either chemical or electrochemical [1].  

 

Comparisons have been also made in the literature between chemical and 

electrochemical polymerization products obtained from other aromatic anilines, with special 

attention paid to diamines [8]. It is usually found that the chemical polymerization methods 

result in higher polymer yields although oligomeric by-products are difficult to remove from 

the reaction mixture. On the other hand, electrochemical polymerization offers the advantage 

that the fine control of the anodic potential avoids polymer overoxidation and, consequently, 

materials with less defects can be isolated on the electrode surface. The formation of non-

conducting films upon electrochemical oxidation could prevent polymer growth and such a 

possibility should be taken into account mostly, although not exclusively, in experiments 

conducted in neutral and alkaline media. 

 

Chemical and electrochemical polymerization of alkyl ring-substituted anilines has 

attracted interest because of the possibility to improve the poor solubility of unmodified 

polyaniline and, besides, to investigate the effect of blocking specific ring polymerization 



3 
 

sites with electron-donor substituents [9–11]. However, to the best of our knowledge, there is 

still no report dealing with the chemical or electrochemical polymerization of alkyl ring-

substituted aminophenols. In the present work, an attempt has been made to synthesize a 

polymer from both routes and to analyze the effect of the presence of a voluminous alkyl 

group on the well-studied polymerization process of aminophenols. It is known that the 

presence of bulky groups attached to the aromatic ring may avoid ππ-stacking between vicinal 

chains of the resulting polymer and this could lead to an improvement in solubility and 

processability of the resulting material. To achieve these goals, 2-amino-4-tert-butylphenol 

(2A-4TBP) has been selected as the monomer species and different spectroscopic techniques 

have been applied to the characterization of the oxidative polymerization products.  

 

 

2. Experimental 

 

The solutions employed for polymerization were 1.0 M HClO4, prepared from Merck 

Suprapur concentrated acid and 18.2 M cm water obtained from an Elga Labwater Purelab 

system. 2-amino-4-tert-butylphenol monomer was purchased from Merck. Ammonium 

persulfate, from Merck, was used as the oxidant for chemical polymerization. 

 

Cyclic voltammetry experiments were carried out in a conventional three-electrode 

cell under N2 atmosphere. The working electrodes used were either platinum or ITO and a 

platinum wire was used as the counter electrode in all cases. All potentials were measured 

against the reversible hydrogen electrode (RHE) immersed in the working solution through a 

Luggin capillary. Cyclic voltammograms were recorded at a constant sweep rate of 50 mV s-1 

and at room temperature. The polycrystalline platinum electrodes were thermally cleaned and 

subsequently protected from the laboratory atmosphere by a droplet of ultrapure water. ITO 

electrodes were cleaned with acetone and ultrapure water. Chemically produced polymers 

were deposited on the working electrodes by casting a small volume of suspension containing 

1 mg mL-1 material in THF solvent.  

 

In situ UV–Vis spectra of polymers were recorded with a V-670 spectrometer from 

JASCO, which is equipped with a double monochromator system and a photomultiplier tube 

detector. A Nicolet 5700 spectrometer equipped with a nitrogen-cooled MCT detector was 

employed for the in situ FTIR experiments. The working Pt disc electrode was mounted on a 
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glass tube and its 1.0 cm2 surface was mirror-polished using alumina powder. The 

spectroelectrochemical cell was made of glass and was provided with a prismatic CaF2 

window beveled at 60°. Spectra were collected at 8 cm-1 resolution in D2O solvent (from 

Aldrich with 99.9% D-atom purity) and are presented as R/R. XPS spectra were recorded 

with a VG-Microtech Multilab 3000 electron spectrometer using a non-monochromatized 

Mg-Ka (1253.6 eV) radiation source of 300 W and a hemispheric electron analyzer equipped 

with nine channeltron electron multipliers. The pressure of the analysis chamber during the 

scans was about 5×10-7 N m-2. After the survey spectra were obtained, higher resolution scans 

were performed at pass energy of 50 eV. The intensities of the different contributions were 

obtained by means of the calculation of the integral one of each peak, after having eliminated 

the baseline with S form and adjusting the experimental curves to a combination of Lorentz 

(30%) and Gaussian (70%) lines. All the binding energies were referred to the line of the C 1s 

to 284.4 eV, obtaining values with a precision of ±0.2 eV. The high-resolution mass 

experiments were performed in a MICROMASS Autospec spectrometer.  

 

 

 

 

 

 

 

 

 

3. Results and discussion   

 

3.1. Electrochemically polymerized 2A-4TBP 

 

Fig. 1 illustrates the cyclic voltammetry curves recorded for a polycrystalline platinum 

electrode immersed in 0.1 M HClO4 + 15 mM 2A-4TBP solution. The oxidation of the 

monomeric species starts at 0.76 V and, as deduced from the high slope of the voltammetric 

curve, is kinetically favored during the first voltammetric sweep. The oxidation peak is 

centered at 0.87 V and, through the first reverse scan, two cathodic peaks are recorded at 0.8 

V and 0.7 V. The former is clearly associated with the reversible reduction of oxidized species 

generated during the forward sweep, whereas the 0.7 V broad wave seems related with the 
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reduction of the oligomer products formed at higher potentials. Such products cannot be re-

oxidized during successive forward sweeps, as manifested by the absence of anodic waves 

different from that of monomer oxidation. The peak current of the main oxidation feature 

decreases upon cycling and its initially fast kinetics decays gradually. Therefore, it is clearly 

deduced from the voltammetric profile that the anodic oxidation of aminophenol monomer 

yields electrochemically inactive oligomeric products that block the electrode hindering 

further oxidation. Cyclic voltammogram in Fig. 1b reveals that the blocking species are 

strongly adsorbed on platinum. This curve was recorded in a background electrolyte solution 

after 300 polymerization cycles, when the surface appeared covered with a purple film. The 

electrode was removed from the polymerization solution, washed with ultrapure water and 

transferred to the 0.1M HClO4 test solution with no monomer added. The voltammetric curve 

shows the characteristic profile of a platinum electrode covered with a thin, almost 

electroinactive oligomeric film. 

 

 

 

The featureless oxidation process undergone by poly(2A-4TBP) in Fig. 1b was 

monitored by in situ UV-vis spectroscopy in order to discern whether or not polaronic species 

are formed upon anodic polarization of this material. The polymer was deposited on an ITO 

coated glass electrode in a parallel experiment to that shown in Fig. 1a and then transferred to 

the spectroelectrochemical cell, where it was immersed at 0.05 V. In situ UV–Vis spectra 

were then recorded at increasing potentials and those obtained in the range from 0.05 to 0.65 

V have been depicted in Fig.2.  

 

 

The first UV–Vis spectrum collected at 0.05 V shows one main absorption feature at 

558 nm. The intensity of this peak remains almost constant at potentials below 0.45 V but 

rises sharply above that value. Such a behavior suggests a redox transformation of the 

oligomeric material, with the absorption probably associated with a benzenoid-to-quinoid 

transition related to polaronic moieties formed upon electrochemical doping [12]. Such a band 

is slightly blue-shifted with respect to polyaniline and closer to the polaronic transitions 

observed for other ring-substituted polyanilines, indicating the presence of polaronic domains 

with short conjugated segments. However, the formation of quinone-like moieties upon 

oligomer oxidation could also contribute significantly to this band [13]. The occurrence of a 
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redox polaronic transformation in poly(2A-4TPB) is also supported by other spectral features 

in Fig 2. Specifically, the spectrum acquired at 0.65V shows the appearance of three 

additional bands centered at 397, 416 and 447 nm. The former one can be assigned to a 

polaron-π* transition, where polarons are isolated one from another reflecting low electrical 

conductivity of the oligomeric material [14]. Regarding the other two features it is worth 

mentioning that, according to literature data on polyaminophenols, electronic absorptions in 

the 410-450 nm range can be attributed to the progressive formation of radical cations in 

phenoxazine rings or, alternatively, to the occurrence of N-N coupling to form azobenzene 

derivatives [15–18]. In the present case, both structures are probably promoted by the 

presence of the voluminous tertbutyl group in meta position relative to the nitrogen atom, 

which tends to hinder the C-N para-coupling and hydrazine-type dimers could be formed due 

to such steric hindrance [19]. Finally, the band at 742 nm, whose intensity remains almost 

constant at increasing potentials, is of uncertain nature but it has been assigned either to the 

bipolaronic transition in para-coupled polyaniline derivatives or to the polaron transition in 

poly(o-aminophenols) [15,16]. According to these results, poly(2A-4TBP) seems an 

oligomeric product originated from a variety of C-N, C-O and N-N monomer couplings. 

 

In situ FTIR spectroscopy has been used to confirm the existence of a redox transition 

in the electrochemically deposited poly(2A-4TBP). The filmed Pt electrode was transferred to 

the IR spectroelectrochemical cell, which contained a free of monomer test solution prepared 

with D2O to facilitate assignments in the 1500-1700 cm-1 spectral range. After some potential 

cycles, the Pt surface was carefully pressed against the prismatic CaF2 window, a reference 

spectrum was then collected at 0.1 V and, finally, the potential was stepped to higher values to 

collect sample spectra. By referring each sample to the unique reference, we can obtain 

information on the redox transformations undergone by the oligomeric material as a function 

of the applied potential. The computed in situ FTIR spectra are displayed in Fig. 3 within the 

frequency range 1100-2200 cm-1. There, the presence of several negative (downward) and 

positive (upward) bands reveals the activation of vibrational modes at increasing potentials, 

which is a characteristic behavior of reversible oxidation processes.  

 

In fact, since no spectral features appear in the spectra obtained at 0.3 V and 0.4 V, it 

can be inferred that poly(2A-4TBP) cannot be oxidized at so moderate potentials. This 

observation is consistent with the results obtained from the in situ UV-vis experiments in Fig. 

2. On the contrary, several IR absorption bands appear in the spectra collected from 0.5 V. 
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The onset of oligomer oxidation at around this potential is testified by the occurrence of a 

clear negative band at 1613 cm-1, a group of less intense negative absorptions in the 1330-

1400 cm-1 frequency range and, finally, two positive bands peaking at 1518 and 1445 cm-1. It 

can be observed that the integrated intensity of all these features, and therefore the oligomer 

oxidation level, increases at increasing potentials and, besides, new absorptions showing 

either negative or positive character are developing. Assignments proposed for the main bands 

are summarized in Table 1. Between the two main bands clearly related with the reduced form 

of poly(2A-4TBP), the feature appearing at 1518 cm-1 can be unambiguously assigned to the 

progressive vanishing of the aromatic C-C stretching due to oligomer oxidation, whereas the 

peak at 1312 cm-1 is related with the parallel transformation of secondary aromatic amines. 

The high intensity reached by the former feature is probably due to the presence of the 

electron-donor alkyl group in the aromatic ring [20]. The band at 1445 cm-1 has been 

sometimes attributed to the skeletal C-C stretching vibration of the aromatic ring, although the 

interpretation of this band is not unanimous. Apart from the C-C stretching,  it has been also 

ascribed either to the existence of N-N coupling or to the formation of phenazine structures in 

polyaniline derivatives [21,22]. In our case, owing to the presence of adjacent alcohol and 

amino groups, it is very likely the formation of phenoxazine rings and/or N-N coupling. This 

hypothesis seems supported by the in situ UV-vis results presented in Fig. 2. 

 

 

 

 

With regard to the oxidized state, it is worth noting that the absorption bands 

appearing, roughly, below 1600 cm-1 support the existence of a reversible redox 

transformation of poly(2A-4TBP). On the contrary, most features appearing above that 

frequency strongly suggest an irreversible degradation process of the oligomeric material at 

high potentials. Indeed, the reversible formation of quinoid rings and intermediate-order C≈N 

bonds, which is common to most polyaniline derivatives, is confirmed respectively by the 

1578 cm-1 feature and the group of overlapped bands in the surroundings of 1350 cm-1. 

Quinone imine centers are responsible for the feature at 1617 cm-1, while the couple of 

negative-going bands at 1750 cm-1 and 1292 cm-1 supports the formation of carboxylic acid 

terminations and confirms the occurrence of an overoxidation process at potentials beyond 

0.9V. Furthermore, the negative band peaking at 1650 cm-1 reveals the formation of degraded 

quinone structures at 0.9V [3]. 
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Electrodeposited poly(2A-4TBP) has been examined by ex situ XPS in order to give 

support to the chemical structures suggested by the in situ techniques. A film grown after 100 

voltammetric cycles was rinsed with ultrapure water, dried under nitrogen and then analyzed 

by XPS. Fig. 4 shows the photoelectronic spectra of C 1s, N 1s and O1s core levels. The C 1s 

signal can be fitted with a major peak at 284.6 and two minor peaks at 285.9 and 287.8 eV. 

The main role corresponds unambigously to aromatic carbon, while the 285.9 eV contribution 

can be assigned to aromatic carbon bound to either amine or imine neutral nitrogen and also 

to oxygen-containing ether structures in the form of phenoxazine [25,26], which are not 

discerneable. The binding energy of the negligible peak at 287.8 eV is probably too high to 

correspond to a carbonyl environment [27] and, consequently, it can be assigned better to a π-

π* shake-up transition from the C 1s parent peak involving benzenoid rings. These signals are 

characteristic of low-conducting polymer systems showing extended unconjugated aromatic 

domains. With regard to the N 1s spectrum, it can be fitted with only two contributions 

showing maxima at 399.7 and 401.9 eV, respectively. The first one is attributed to neutral 

species that may correspond to amine, azo and imine groups, as these species do not show 

significantly different chemical shifts. The higher binding energy peak can be assigned to 

positively charged N+ atoms resulting from the protonation of imine centers [28,29], although 

the N+/N ratio derived from Fig.4 is only 13%.  

 

Finally, the O 1s core level spectrum has been deconvoluted into three peaks at 529.8, 

532.3 and 533.6 eV. The intermediate feature at 532.3 eV can be assigned to 

quinone/carbonyl compounds [30], while the high energy peak at 533.6 eV is clearly related 

with the presence of C-O-C in phenoxazine species [26]. It is known that the O 1s main signal 

tends to be affected by spurious signals coming from extrinsic oxygen-containing species. 

Such an effect is particularly significant when samples are constituted by organic thin films 

deposited on Pt electrodes. This is the case of the 529.8 eV peak, which comes mostly from 

Pt-OH although a small contribution from carboxylic C=O species at over-oxidized polymer 

chains cannot be fully rejected. In essence, the XPS results presented in this section are 

compatible with the presence of both phenoxazine and azo-derivatives and support the 

assignments made above from in situ UV-vis and FTIR experiments. 

 

3.2. Chemically polymerized 2A-4TBP 
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To carry out the chemical polymerization of 2-amino-4-tert-butylphenol, the 

compound was dissolved in 1.0 M HClO4 until a concentration of 15 mM was attained. The 

polymerization was started after the addition of an equimolar ratio of ammonium persulfate in 

a vigorously stirred ice bath at 0°C. After 22 hours, the purple polymerization product was 

thoroughly washed with 1.0 M perchloric acid and then dried under dynamic vacuum for 3 

hours. The material recovered after polymerization approaches 68%. For the electrochemical 

measurements, a platinum electrode coated with poly(2A-4TBP) was prepared by casting a 

drop of solution containing 1 mg/mL polymer on the metal substrate and then evaporating the 

solvent. Fig. 5 shows the stabilized cyclic voltammogram recorded in 0.1 M HClO4 for such a 

modified electrode. The forward scan shows a broad anodic current centered at around 0.47 V 

while in the reverse scan the main reduction peak is centered at 0.42 V. No significant 

decrease in current has been recorded upon potential cycling, which indicates an adequate 

stability of the polymer film on this surface. 

 

The oxidation process of poly(2A-4TBP) has been followed by in situ UV-vis 

spectroelectrochemistry. After chemical polymerization, the material was deposited on an 

ITO electrode and immersed in the perchloric acid test solution at controlled potential. Fig.6 

shows the set of UV-vis absorption spectra recorded during a potential excursion from 0.05 V 

up to 0.65 V. Three absorption bands are detected at 385, 445 and 562 nm in the first 

spectrum of the series. The frequencies, and therefore the assignments, of these features fit 

well with those recorded in Fig. 2 for the electrochemically synthesized material. However, 

the intensity of the 562 nm feature in Fig. 2 rises faster at higher potentials, which is probably 

a consequence of the formation of additional species, specifically quinone-like groups, in the 

electrochemically deposited polymer. This observation strongly suggests that the 

electrochemically obtained material is more sensitive (i.e. is less stable) to the applied 

potential than the chemical one.  

 

The chemically synthesized polymer conductivity has been measured by means of the 

four-probe method. The result was 3×10-8 S cm-1, a figure roughly between 10 and 30 times 

smaller than for poly(o-aminophenol) and about three orders of magnitude less than the alkyl 

Pani-derivative poly(o-toluidine). Interestingly, the in situ UV-vis spectra of poly(o-

aminophenol) [15] shows a transient species formed at around the formal potential that seems 

at the origin of the polymer conductivity. The in situ UV-vis experiments shown in Figs. 2 

and 6 reveal that the transient species is not formed or, maybe, its concentration is too low to 
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be detected. Consequently, the conductivity of poly(2A-4TBP) is significantly lesser than that 

of poly(o-aminophenol). 

 

Possible structural and/or chemical singularities of poly(2A-4TBP) formed through the 

chemical route were examined by in situ FTIR spectroscopy. The platinum disc electrode was 

prepared, as in the previous experiment, by casting a drop of the dissolved polymer on its 

surface. The modified electrode was transferred to the spectroelectrochemical cell, where a 

reference spectrum was acquired at 0.1 V. The potential was then stepped sequentially to 

higher values to acquire sample interferograms. Fig.7 displays the in situ FTIR spectra 

recorded in 0.1M HClO4/D2O medium. Several absorption peaks, whose intensities increase 

at increasing potentials, were observed during potential scanning, showing the progress of the 

oxidation process.  

 

 

 

In contrast to Fig. 3, FTIR spectra in Fig. 7 look dominated by negative-going 

features. The presence of several absorption bands peaking at 1507 cm-1, 1280 cm-1 and 1190 

cm-1 in the first spectrum reveals that poly(2A-4TBP) electrochemical oxidation starts at 

potential values as low as 0.3 V. In addition, both the negative character and increasing 

intensity at higher potentials show these vibrational modes are unequivocally related with the 

oxidized state of the polymer. In fact, the higher frequency band can be assigned to the C=C 

stretching vibration of quinoid rings, which is here more intense and shifted to lower 

wavenumbers than in Fig.3, whereas the 1190 cm-1 feature is attributed to a combination of 

quinoid C-N-C stretching and C-H in-plane bending [24,30,31]. The assignment of the 1280 

cm-1 peak is uncertain but, according to previous literature data, it can be attributed to the 

persistence of persulfate ions which were employed as the oxidizing agent [32]. On the other 

hand, the occurrence of a reversible oxidation process is supported by the parallel 

development of the quinone-imine C=N stretching band at 1605 cm-1, which appears also 

slightly downshifted with respect to Fig. 3. Since the quinoid C=C stretching is displaced to 

lower frequencies, it overlaps with the aromatic C-C stretching of benzenoid rings, that 

usually appears as an upward band at around 1510 cm-1 in polyaniline derivatives [21,23]. 

Therefore, the aromatic C-C stretching band results perturbed and this is probably the reason 

for the spurious absence of a clear positive feature in the spectra of Fig. 7. 
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On the other hand, the positive-going band at 1406 cm-1 can be ascribed to an N=N 

stretching vibration pointing to the formation of azo-derivatives by N-N coupling, as 

suggested above for the electrochemically synthesized polymer. With regard to the 1330-1400 

cm-1 frequency range, several downward peaks are probably related with different order C-N 

stretching vibrations of oxidized poly(2A-4TBP). It is worth noting that, in parallel to the 

electrochemical polymer, quinones are also formed by degradation of this material at 0.9V, as 

deduced from the 1650 cm-1 shoulder appearing at such a potential. It can be concluded that, 

despite some minor differences related with the higher electroactivity of the chemically 

synthesized polymer, the redox process looks structurally similar for both, chemical and 

electrochemical materials and, consequently, the species formed upon oxidation are 

analogous. 

 

 

 

To gain more insight on the chemical structure of chemically produced poly(2A-

4TBP), an XPS characterization of the sample has been also undertaken. Fig. 8 shows the 

XPS spectra obtained for C 1s, N 1s and O1s core level signals. In parallel to Fig. 4, the C 1s 

peak can be fitted with two main contributions at 284.8 and 286.1 eV plus a minor feature at 

288.0 eV. All these peaks appear shifted by 0.2 eV with respect to Fig. 4 but the assignments 

match those performed for the electrochemical material. In this way, aromatic carbons are 

responsible for the 284.8 eV feature, while that at 286.1 eV is assigned to carbons bound to 

either O- or N-containing structures. The main difference between XPS spectra of chemical 

and electrochemical samples arise from the N 1s signal. The best fit for the chemically 

synthesized poly(2A-4TBP) is obtained assuming three different contributions with maxima 

located at 399.8, 400.9 and 402.1 eV. For the electrochemical film, the higher binding energy 

peak at 401.9 eV was attributed to the presence of positively charged N atoms, and such 

assignment is no different for the chemical material. The feature at 399.8 eV was related in 

Fig. 4 with neutral species corresponding to indistinguishable amine, imine and azo groups. In 

the present spectrum, such a signal can be better resolved giving rise to the intermediate 

contribution at 400.9 eV. This latter one is ascribed to nitrogen species having a particular 

chemical environment, as we will discuss shortly.  

 

On the other hand, the O 1s signal can be deconvoluted into three contributions. The 

absence of the 529.8 eV line (see Fig. 4 for a comparison) reveals clearly that the underlying 
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Pt substrate is in this case not accessible to the radiation, because of the higher thickness of 

the casted chemical polymer. The high binding energy peak at 533.2 eV reveals the 

occurrence of C-O-C structures which are part of phenoxazine rings, while the 532.0 eV 

feature is assigned to those C=O structures materialized at quinoid rings, as it was done for 

the electrochemical material. The O 1s spectrum presents an additional minor contribution 

shifted by 2 eV positive to the main O 1s line. That 534.7 eV feature is attributed to the 

presence of a small amount of water molecules, probably arising from hydrogen bonding to 

neutral amine/imine sites. This phenomenon seems at the origin of the N 1s signal splitting 

discussed above, for which the 400.9 eV intermediate peak would result from the partial 

positive charge at those nitrogen atoms affected by hydrogen bonded water molecules. Similar 

assignment has been reported recently for poly(o-aminophenol) films [26].  

 

The characterization of the chemically obtained poly(2A-4TB) was complemented by 

a High-Resolution Mass Spectroscopy study. The HRMS spectrum revealed four intense 

signals at m/z= 1019, 1619, 2219 and 2820, which were attributed to oligomers containing 6, 

9, 13 and 16 monomer units in the presence of some counter-ions. 
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4. Conclusions 

 

Poly(2-amino-4-tert-butylphenol) has been obtained by means of electrochemical and 

chemical oxidation methods. The productivity of the electrochemical synthesis is significantly 

lower because the deposited material forms a low conducting layer on the surface of the 

platinum electrode that hinders further oxidation of the monomer species. In spite of this, both 

chemical structure and redox behavior of the polymeric material are not governed by the 

synthesis method employed, either chemical or electrochemical, as deduced from the analysis 

of the spectroscopic results obtained.  

 

In situ FTIR and in situ UV-vis spectroscopies strongly suggest that the chemical 

structure of poly(2A-4TBP) contains both phenoxazine rings and azo moieties. The former, 

which are more prevalent, arise from the usual para-coupling of aniline-derivative monomers 

while the latter are probably stimulated by the presence of a voluminous alkyl group adjacent 

to the more reactive para- position.  

 

 HRMS results revealed the chemical polymerization product as an oligomer mixture 

containing a maximum of 16 monomer units. The scheme below represents the reduced form 

of a shorter fragment containing both azo and phenoxazine chemical structures. 

 

 

 

 

According to the chemical structure proposed, it is expected that the redox switching 

of poly(2A-4TBP) could be almost parallel to that reported for the parent poly(o-

aminophenol), with small differences ascribed to the presence of some azo groups along the 

ladder oligomer structure. Indeed, the in situ FTIR results presented here reveal that the redox 

transition of poly(2A-4TBP) involves nearly the same vibrational modes than those reported 
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for poly(o-aminophenol). In addition to the reversible redox transition, the formation of 

overoxidized structures containing quinone-like structures has been also detected by FTIR, 

while UV-vis suggests that these structures are more abundant in the electrochemically 

obtained material than in the chemical product.  

 

The conductivity of poly(2A-4TBP) is lower than that of poly(o-aminophenol) and 

three orders of magnitude inferior to poly(o-toluidine). According to this result, the key factor 

governing the poor poly(2A-4TBP) conductivity seems the formation of azo groups (which 

can break the extended conjugation) and, probably, not the eventual torsion angle between 

adjacent rings that relieves the steric strains promoted by the tert-butyl group. UV-vis 

transient species related with the polymer main oxidation peak seem absent in poly(2A-

4TBP), yet they play a significant role in the electrical conductivity of the parent poly(o-

aminophenol) polymer. 

 

 

Acknowledgments 

 

Financial support from the Spanish Ministerio de Economía y Competitividad and 

FEDER funds (MAT2013-42007-P) and from the Generalitat Valenciana 

(PROMETEO2013/038) is gratefully acknowledged. M. Abidi thanks the Ministry of Higher 

Education and Scientific Research of Tunisia for funding her stay at the University of 

Alicante. 

 

References 

 

[1] C. Barbero, J.J. Silber, L. Sereno, Formation of a novel electroactive film by 

electropolymerization of ortho-aminophenol, J. Electroanal. Chem. Interfacial 

Electrochem. 263 (1989) 333–352.  

[2] B. Habibi, M.H. Pournaghi-Azar, Composite electrodes consisting Pt nano-particles 

and poly (aminophenols) film on pre-treated aluminum substrate as electrocatalysts for 

methanol oxidation, J. Solid State Electrochem. 14 (2009) 599–613.  

[3] H.J. Salavagione, J. Arias, P. Garcés, E. Morallón, C. Barbero, J.L. Vázquez, 

Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode 

in acid medium, J. Electroanal. Chem. 565 (2004) 375–383.  

[4] H.A. Menezes, G. Maia, Films formed by the electrooxidation of p-aminophenol (p-

APh) in aqueous medium: What do they look like?, J. Electroanal. Chem. 586 (2006) 



15 
 

39–48.  

[5] S. Sankarapapavinasam, Permeability and electrocatalytic properties of film prepared 

by electropolymerization of m-aminophenol, Synth. Met. 58 (1993) 173–185. 

[6] K. Chiba, T. Ohsaka, Y. Ohnuki, N. Oyama, Electrochemical preparation of a ladder 

polymer containing phenazine rings, J. Electroanal. Chem. Interfacial Electrochem. 219 

(1987) 117–124. 

[7] K. Jackowska, J. Bukowska, A. Kudelski, Electro-oxidation of o-aminophenol studied 

by cyclic voltammetry and surface enhanced Raman scattering (SERS), J. Electroanal. 

Chem. 350 (1993) 177–187. 

[8] X.-G. Li, M.-R. Huang, W. Duan, Y.-L. Yang, Novel Multifunctional Polymers from 

Aromatic Diamines by Oxidative Polymerizations, Chem. Rev. 102 (2002) 2925–3030. 

[9] Y. Wei, R. Hariharan, S.A. Patel, Chemical and electrochemical copolymerization of 

aniline with alkyl ring-substituted anilines, Macromolecules. 23 (1990) 758–764. 

[10] M. Leclerc, J. Guay, L.H. Dao, Synthesis and characterization of poly(alkylanilines), 

Macromolecules. 22 (1989) 649–653.  

[11] S. Cattarin, L. Doubova, G. Mengoli, G. Zotti, Electrosynthesis and properties of ring-

substituted polyanilines, Electrochim. Acta. 33 (1988) 1077–1084.  

[12] O.. Dimitriev, Origin of the exciton transition shift in thin films of polyaniline, Synth. 

Met. 125 (2001) 359–363.  

[13] C.H.B. Silva, D.C. Ferreira, R.A. Ando, M.L.A. Temperini, Aniline-1,4-benzoquinone 

as a model system for the characterization of products from aniline oligomerization in 

low acidic media, Chem. Phys. Lett. 551 (2012) 130–133.  

[14] Y. Xia, J.M. Wiesinger, A.G. MacDiarmid, A.J. Epstein, Camphorsulfonic Acid Fully 

Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an 

Ultraviolet/Visible/Near-Infrared Spectroscopic Method, Chem. Mater. 7 (1995) 443–

445. 

[15] R.I. Tucceri, C. Barbero, J.J. Silber, L. Sereno, D. Posadas, Spectroelectrochemical 

study of poly-o-aminophenol, Electrochim. Acta. 42 (1997) 919–927.  

[16] A. Wen, T.C.; Sivakumar, C.; Gopalan, In situ, UV–Vis spectroelectrochemical studies 

on the initial stages of copolymerization of aniline with diphenylamine-4-sulphonic 

acid, Electrochim. Acta. 46 (2001) 1071–1085. doi:10.1016/S0013-4686(00)00691-5. 

[17] A.-H.A. Shah, R. Holze, In situ UV–vis spectroelectrochemical studies of the 

copolymerization of o-aminophenol and aniline, Synth. Met. 156 (2006) 566–575. 

[18] A.-H.A. Shah, R. Holze, Spectroelectrochemistry of two-layered composites of 

polyaniline and poly(o-aminophenol), Electrochim. Acta. 53 (2008) 4642–4653.  

[19] G. Socrates, Infrared and Raman characteristic group frequencies: Tables and charts., 

3rd Ed., John Wiley & Sons, Chichester, UK, 2004. 

[20] M. Trchová, J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer 

nanotubes (IUPAC Technical Report), Pure Appl. Chem. 83 (2011) 1803–1817. 

[21] I. Seděnková, J. Stejskal, M. Trchová, In Situ Infrared Spectroscopy of Oligoaniline 

Intermediates Created under Alkaline Conditions., J. Phys. Chem. B. 118 (2014) 

14972–14981. 



16 
 

[22] M.A. Cotarelo, F. Huerta, R. Mallavia, E. Morallón, J.L. Vázquez, On the 

polymerization of 2-aminodiphenylamine, Synth. Met. 156 (2006) 51–57.  

[23] M.A. Cotarelo, F. Huerta, C. Quijada, R. Mallavia, J.L. Vázquez, Synthesis and 

Characterization of Electroactive Films Deposited from Aniline Dimers, J. 

Electrochem. Soc. 153 (2006) D114. 

[24] I. Losito, E. De Giglio, N. Cioffi, C. Malitesta, Spectroscopic investigation on polymer 

films obtained by oxidation of o-phenylenediamine on platinum electrodes at different 

pHs, J. Mater. Chem. 11 (2001) 1812–1817.  

[25] M.E. Carbone, R. Ciriello, S. Granafei, A. Guerrieri, A.M. Salvi, Electrosynthesis of 

conducting poly(o-aminophenol) films on Pt substrates: a combined electrochemical 

and XPS investigation, Electrochim. Acta. 144 (2014) 174–185.  

[26] J.F. Watts, High resolution XPS of organic polymers: The Scienta ESCA 300 database. 

G. Beamson and D. Briggs. John Wiley & Sons, Chichester, ISBN 0471 935921, 

(1992), Surf. Interface Anal. 20 (1993) 267–267.  

[27] P. Brant, R.D. Feltham, X-ray photoelectron spectra of aryldiazo derivatives of 

transition metals, J. Organomet. Chem. 120 (1976) C53–C57.  

[28] H.S.O. Chan, P.K.H. Ho, S.C. Ng, B.T.G. Tan, K.L. Tan, A New Water-Soluble, Self-

Doping Conducting Polyaniline from Poly(o-aminobenzylphosphonic acid) and Its 

Sodium Salts: Synthesis and Characterization, J. Am. Chem. Soc. 117 (1995) 8517–

8523.  

[29] NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (Web Version), 2012., 

Http://srdata.nist.gov/xps/. (n.d.). 

[30] M. Trchová, I. Šeděnková, J. Stejskal, In-situ polymerized polyaniline films 6. FTIR 

spectroscopic study of aniline polymerisation, Synth. Met. 154 (2005) 1–4.  

[31] J. Laska, J. Widlarz, Spectroscopic and structural characterization of low molecular 

weight fractions of polyaniline, Polymer (Guildf). 46 (2005) 1485–1495.  

 

  



17 
 

0.0 0.2 0.4 0.6 0.8 1.0

-200

0

200

400

600  1st cycle

 2nd cycle

 5th cycle

 7th cycle

 

 

 I
 /

 
A

E / V vs RHE
 

0.0 0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

5

10

 

 

 I
 /
 

A

E / V vs RHE
 

Fig. 1. a) Cyclic voltammograms recorded for a Pt electrode during the oxidation of 15 mM 

2A-4TBP in 1 M HClO4. b) Electrochemical behavior of a poly(2A-4TBP) thin film formed 

as in Fig. 1a. Test solution: 0.1M HClO4. v= 50 mV s-1 
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Fig. 2. In situ UV–vis spectra recorded for a poly (2A-4TBP) film at different applied 

electrode potentials (from bottom to top: 0.05V, 0.25V, 0.45V, 0.55V, 0.65V). The poly(2A-

4TBP) film was prepared on ITO coated glass from a solution containing 15mM monomer in 

aqueous 0.1 M HClO4. 
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Fig. 3. Set of in situ FTIR spectra collected during the oxidation of an electrochemically 

obtained poly(2A-4TBP) film in 0.1M HClO4/D2O test solution. Reference potential 0.1 V. 

Sample potential labelled for each spectrum. 100 interferograms at each potential. 
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Fig.4. High resolution XPS signals for C 1s, N 1s and O 1s obtained from a poly(2A-4TBP) 

film electrodeposited on a platinum substrate. 
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Fig.5. Cyclic voltammogram recorded in 0.1M HClO4 electrolyte for poly(2A-4TBP) 

synthesized chemically and casted on a polycrystalline platinum electrode. v= 50 mV s-1. 
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Fig. 6. In situ UV-vis spectra recorded at different electrode potentials (from bottom to top: 

0.05V, 0.25V, 0.45V, 0.55V, 0.65V) for a chemically synthesized poly (2A-4TBP) deposited 

on ITO. Test solution 0.1M HClO4. 
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Fig. 7. In situ FTIR spectra collected during the oxidation of a chemically synthesized 

poly(2A-4TBP) in 0.1M HClO4/D2O test solution. Reference potential 0.1 V. Sample 

potential labelled for each spectrum. 100 interferograms at each potential. 
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Fig. 8.  High-resolution XPS spectra of chemically synthesized poly (2A-4TBP) showing the 

curve-fitted signals for C 1s, N 1s and O 1s. 
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Scheme 1: Chemical structure of 2-amino-4-tert-butylphenol (2A-4TBP) 
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Table 1. Observed frequencies and proposed assignments for the vibrational bands of 

electrochemically deposited poly (2A-4TBP) 

 Frequency (cm-1) Assignment Ref. 

Reduced state 

1518 Aromatic C-C str. [3][19] 

1445 Azo group N=N str. [22] 

1312 Secondary aromatic amine N-H str. [23] 

Oxidized state 

1752 Carboxylic acid C=O str. [3] 

1650 Quinone C=O str  [3]  

1617 Quinone-imine C=N str. [24] 

1578 Quinoid ring C=C str. [20] 

1330-1400 Intermediate order (C≈N) str. [23] 

1292 Carboxylic acid C-OH str. [20] 

 

 

 

Table. 2. Proposed assignments for the main vibrational bands of chemically synthesized 

poly(2A-4TBP) in 0.1M HClO4 / D2O. 

 

 
Frequency (cm-1) Assignment 

Reduced 

state 
1407 N=N str. 

Oxidized 

state 

1738 Carboxylic acid C=O str. 

1650 Quinone C=O str. 

1605 Quinone-imine C=N str 

1507 Quinoid ring C=C str. 

1330-1400 Intermediate order (C≈N) str. 

1280 S2O8
2- 

1190 N-C-N str. + C-H bend. 

 


