117 research outputs found

    Tuning independently Fermi energy and spin splitting in Rashba systems: Ternary surface alloys on Ag(111)

    Full text link
    By detailed first-principles calculations we show that the Fermi energy and the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can be independently tuned by choosing the concentrations of Bi and Pb. The findings are explained by three fundamental mechanisms, namely the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and band filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba energy, and the Fermi energy of the surface states in the complete range of concentrations. Our results suggest to investigate experimentally effects which rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting and band filling.Comment: 11 pages, 3 figure

    Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Get PDF
    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x=2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3×3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2×2) superstructure, and finally the pure (2×2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2×2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates

    Systematics of electronic and magnetic properties in the transition metal doped Sb2_2Te3_3 quantum anomalous Hall platform

    Full text link
    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically-doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here we report on a detailed and systematic investigation of transition-metal (TM)-doped Sb2_2Te3_3. By combining density functional theory (DFT) calculations with complementary experimental techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission (resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM-doped TIs. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2_2Te3_3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity-dependent and can vary from in-plane to out-of-plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM-doped Sb2_2Te3_3 in the ferromagnetic state.Comment: 40 pages, 13 figure

    Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2_2Te4_4

    Full text link
    The layered van der Waals antiferromagnet MnBi2_2Te4_4 has been predicted to combine the band ordering of archetypical topological insulators such as Bi2_2Te3_3 with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi2_2Te4_4(0001) single crystals by use of spin- and angle-resolved photoelectron spectroscopy experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.Comment: Revised versio

    Spin-texture inversion in the giant Rashba semiconductor BiTeI

    Get PDF
    Semiconductors with strong spin-orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin-orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors.This work was supported by DFG (through SFB 1170 'ToCoTronics') and through FOR1162 (P3). We acknowledge the support by the Basque Departamento de Educacion, UPV/EHU (Grant Number IT-756-13), Spanish Ministerio de Economia y Competitividad (MINECO Grant Number FIS2013-48286-C2-2-P), Tomsk State University Academic D.I. Mendeleev Fund Program in 2015 (Research Grant Number 8.1.05.2015), the Russian Foundation for Basic Research (Grant Numbers 15-02-01797 and 15-02-589 02717). Partial support by the Saint Petersburg State University (Grant Number 15.61.202.2015) is also acknowledged
    corecore