92 research outputs found

    Crossover soft-SAFT modelling of the CO2+NO2/N2O4 mixture

    Get PDF
    Accurate thermo-physical properties are mandatory for all industrial applications. However, experimental data are often scarce and models are needed for the estimation of properties. Such is the case in supercritical processes like the selective oxidation of vegetal macromolecules in mixture NO2/N2O4 – supercritical CO2 aiming at producing body-degradable polymers readily usable for inside body surgery. The so-called crossover soft-SAFT equation of state is used to model the pure compounds and the mixture. The quadrupolar effect is explicitly considered when modeling carbon dioxide, obtaining excellent agreement for the whole phase equilibrium diagram. NO2 is modeled as a self associating molecule with a single association site. Finally, CO2 and NO2 pure compound parameters are used to predict the vapor – liquid coexistence of the CO2 + NO2 / N2O4 mixture at different temperatures. Experimental pressure – CO2 mass fraction isotherms recently measured are used for comparison. Good agreement is obtained with the use of a unique binary parameter, independent of thermodynamic conditions, although more experimental data would be useful to conclude about the accuracy of the calculation

    Modeling the vapor-liquid equilibrium and association of nitrogen dioxide/dinitrogen tetroxide and its mixtures with carbon dioxide

    Get PDF
    We have used in this work the crossover soft-SAFT equation of state to model nitrogen dioxide/dinitrogen tetraoxide (NO2/N2O4), carbon dioxide (CO2) and their mixtures. The prediction of the vapor – liquid equilibrium of this mixture is of utmost importance to correctly assess the NO2 monomer amount that is the oxidizing agent of vegetal macromolecules in the CO2 + NO2 / N2O4 reacting medium under supercritical conditions. The quadrupolar effect was explicitly considered when modeling carbon dioxide, enabling to obtain an excellent description of the vapor-liquid equilibria diagrams. NO2 was modeled as a self associating molecule with a single association site to account for the strong associating character of the NO2 molecule. Again, the vapor-liquid equilibrium of NO2 was correctly modeled. The molecular parameters were tested by accurately predicting the very few available experimental data outside the phase equilibrium. Soft-SAFT was also able to predict the degree of dimerization of NO2 (mimicking the real NO2/N2O4 situation), in good agreement with experimental data. Finally, CO2 and NO2 pure compound parameters were used to predict the vapor – liquid coexistence of the CO2 + NO2 / N2O4 mixture at different temperatures. Experimental pressure – CO2 mass fraction isotherms recently measured were well described using a unique binary parameter, independent of the temperature, proving that the soft-SAFT model is able to capture the non-ideal behavior of the mixture

    Phase Behavior of strongly associating systems

    Get PDF
    The modeling of associating fluids has been an active area of research for several decades. Attention has gradually shifted from the so called chemical theories, where molecular association is treated as a chemical reaction, to molecular models where association naturally arises from strong attractive intermolecular forces; among the last ones the Statistical Associating Fluid Theory (SAFT) and related approaches are becoming very popular. We will present calculations performed with the soft-SAFT EoS [F.J. Blas and L.F. Vega, Ind. Eng. Chem. Res. 37 (1998) 660-674.] to simulate the equilibrium thermodynamic properties of the acetic acid and the nitriles family (two classes of strongly associating compounds) as well as their mixtures[K. Jackowski and E. Wielogorska, Journal of Molecular Structure355 (1995) 287-290.]. Carboxylic acids form stable double hydrogen bridged dimers which in the gas phase exist in equilibrium with the monomers. Molecular association in liquid phase of the nitriles family is interesting as they are important organic solvents which are soluble in water without any limits. Pure-component molecular parameters are obtained by fitting the equation to available experimental data. The equation enables to search for physical trends, allowing the transferability of the parameters. The complex behavior of these mixtures is also investigated with the same approach

    Soft-SAFT modeling of vapour liquid equilibria of nitriles and their mixtures

    Get PDF
    Nitriles are strong polar compounds showing a highly non-ideal behavior, which makes them challenging systems from a modeling point of view; in spite of this, accurate predictions for the vapor-liquid equilibria of these systems are needed, as some of them, like acetonitrile (CH3CN) and propionitrile (C2H5CN), play an important role as organic solvents in several industrial processes. This work deals with the calculation of the vapor - liquid equilibria (VLE) of nitriles and their mixtures by using the crossover soft-SAFT Equation of State (EoS). Both polar and associating interactions are taken into account in a single association term in the crossover soft-SAFT equation, while the crossover term allows for accurate calculations both far from and close to the critical point. Molecular parameters for acetonitrile, propionitrile and n-butyronitrile (C3H7CN) are regressed from experimental data. Their transferability is tested by the calculation of the VLE of heavier linear nitriles, namely, valeronitrile (C4H9CN) and hexanonitrile (C5H11CN), not included in the fitting procedure. Crossover soft-SAFT results are in excellent agreement with experimental data for the whole range of thermodynamic conditions investigated, proving the robustness of the approach. Parameters transferability has also been used to describe the isomers n-butyronitrile and i-butyronitrile. Finally, the nitriles soft-SAFT model is further tested in VLE calculation of mixtures with benzene, carbon tetrachloride and carbon dioxide, which proved to be satisfactory as well

    Technology-based Product-services for Supporting Frugal Innovation

    Get PDF
    In recent years, European manufacturing companies are gradually applying innovative PSS (Product Service Systems), as strategic opportunity for differentiating from competitors, offering an integrated bundle of products and services, targeted on specific needs of different customers. At the same time, frugal innovation has also surged as a new business concept based upon an intelligent use of resources to fulfill region-dependent customers' needs. Both approaches bring forth rethinking of established business models, which in turn asks for an in-depth analysis of the implications on the company organization and infrastructure, at supply chain and plant levels, urging towards manufacturing networks and reconfigurable assembly lines. This paper presents a formalized framework to support product-service design and the related business model characterization, in the context of frugal innovation. The methodology is applied to three real industrial scenarios respectively in the aeronautics, the domestic appliances and the machinery industry, which are analyzed within the framework of the H2020 European funded project 'ProRegio'

    Patterns within Patterns within the Smart Living Experience

    Get PDF
    Modern technology is increasingly being employed to create a “smart” living experience. These “smart” technology entities are producing copious of amounts data, which in turn rely on increased storage, distribution and computation capacity to manage the data. Depending on the scenario, the diversity of piecemeal solutions almost reflects the diversity of problems they address. But some solutions can be reapplied. In the field of computing, design patterns can provide a general, reusable solution to commonly recurring problems within a given context through software design. This work seeks to determine the core elements of a technology-independent design pattern format and an open software framework can be developed to capture, share and redeploy existing successful and reusable strategies for commonly encountered smart environment use cases. Applying in areas such as assistive technology, energy management and environmental monitoring. The underpinning notion of this paper is to introduce “how, where and why” a rule set based in “design pattern” format could contribute to describe a general “understanding” of given cases in the smart environment domain, as well as allow different processes to collaborate with each other

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity.

    Get PDF
    Heterozygosity for human () dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the promoter. The patients\u27 cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with DN mutations, ZNF341-deficient patients lack T helper 17 (T17) cells, have an excess of T2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the transcription-dependent autoinduction and sustained activity of STAT3
    • …
    corecore