372 research outputs found

    Acceleration Rates and Injection Efficiencies in Oblique Shocks

    Get PDF
    The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \teq{\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \teq{\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.Comment: 24 pages including 6 encapsulated figures, as a compressed, uuencoded, Postscript file. Accepted for publication in the Astrophysical Journa

    Local and Global Superconductivity in Bismuth

    Get PDF
    We performed magnetization M(H,T) and magnetoresistance R(T,H) measurements on powdered (grain size ~ 149 micrometers) as well as highly oriented rhombohedral (A7) bismuth (Bi) samples consisting of single crystalline blocks of size ~ 1x1 mm2 in the plane perpendicular to the trigonal c-axis. The obtained results revealed the occurrence of (1) local superconductivity in powdered samples with Tc(0) = 8.75 \pm 0.05 K, and (2) global superconductivity at Tc(0) = 7.3 \pm 0.1 K in polycrystalline Bi triggered by low-resistance Ohmic contacts with silver (Ag) normal metal. The results provide evidence that the superconductivity in Bi is localized in a tiny volume fraction, probably at intergrain or Ag/Bi interfaces. On the other hand, the occurrence of global superconductivity observed for polycrystalline Bi can be accounted for by enhancement of the superconducting order parameter phase stiffness induced by the normal metal contacts, the scenario proposed in the context of "pseudogap regime" in cuprates [E. Berg et al., PRB 78, 094509 (2008)].Comment: 12 pages including 9 figures and 1 table, Special Issue to the 80th birthday anniversary of V. G. Peschansky, Electronic Properties of Conducting System

    Pair Production Absorption Troughs in Gamma-Ray Burst Spectra: A Potential Distance Discriminator

    Get PDF
    Relativistic bulk motion with large Lorentz factors has recently been inferred for gamma-ray bursts regardless of whether they are of galactic or cosmological origin. This conclusion results from calculations of internal pair production transparency in bursts that usually assume an infinite power-law source spectrum for simplicity, an approximation that is quite adequate for some bursts detected by EGRET. However, for a given bulk Lorentz factor \teq{\Gamma}, photons above the EGRET range can potentially interact with sub-MeV photons in such calculations. Hence it is essential to accurately address the spectral curvature in bursts seen by BATSE. In this paper we present the major properties induced in photon-photon opacity considerations by such spectral curvature. The observed spectral breaks around 1 MeV turn out to be irrelevant to opacity in cosmological bursts, but are crucial to estimates of source transparency in the 1 GeV -- 1 TeV range for sources located in the galactic halo. We find that broad absorption troughs can arise at these energies for suitable bulk motion parameters \teq{\Gamma}. Such troughs are probably an unambiguous signature of a galactic halo population, and if observed by experiments such as Whipple, MILAGRO and GLAST, would provide powerful evidence that such bursts are not at cosmological distances.Comment: 10 pages, AASTeX format, including 2 eps figures, ApJLett in pres

    The Escape of High-Energy Photons from Gamma-Ray Bursts

    Get PDF
    Eleven bright gamma-ray bursts (GRBs) detected by BATSE have also been seen at much higher energies by EGRET, six at energies above 10 MeV. Such observations imply that these bursts are optically thin to photon-photon pair production at all observed energies. For bursts more than about 30pc away, internal transparency can be achieved only if the source is moving with a relativistic bulk Lorentz factor Γ1\Gamma\gg 1, or if the radiation is highly beamed. Early calculations of γγe+e\gamma\gamma\to e^+e^- considerations for GRBs were limited to cases of a beam with opening half-angle \Thetab\sim 1/\Gamma, or expansions of infinitely thin spherical shells. This paper presents our extension of pair production optical depth calculations in relativistically expanding sources to more general geometries, including shells of finite thickness and arbitrary opening angle. The problem is reduced analytically to a single integral in the broadly applicable case of observing photons along the axis of the expansion. We find that the minimum bulk Lorentz factor for the EGRET sources to be optically thin is only moderately dependent on the shell thickness and virtually independent of its opening solid angle if \Thetab\gtrsim 1/\Gamma. This insensitivity to \Thetab relieves the commonly-perceived number problem for non-repeating sources at cosmological distances, i.e. it is not necessary to invoke small \Thetab to effect photon escape.Comment: 51 pages, including 8 eps figures, to appear in ApJ, December 20 199

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    Prompt high-energy emission from gamma-ray bursts in the internal shock model

    Full text link
    The prompt GRB emission is thought to arise from electrons accelerated in internal shocks propagating within a highly relativistic outflow. The launch of Fermi offers the prospect of observations with unprecedented sensitivity in high-energy (>100 MeV) gamma-rays. The aim is to explore the predictions for HE emission from internal shocks, taking into account both dynamical and radiative aspects, and to deduce how HE observations constrain the properties of the relativistic outflow. The emission is modeled by combining a time-dependent radiative code with a dynamical code giving the evolution of the physical conditions in the shocked regions.Synthetic lightcurves and spectra are compared to observations. The HE emission deviates significantly from analytical estimates, which tend to overpredict the IC component, when the time dependence and full cross-sections are included. The exploration of the parameter space favors the case where the dominant process in the BATSE range is synchrotron emission. The HE component becomes stronger for weaker magnetic fields. The HE lightcurve can display a prolonged pulse duration due to IC emission, or even a delayed peak compared to the BATSE range.Alternatively, having dominant IC emission in the BATSE range requires most electrons to be accelerated into a steep power-law distribution and implies strong 2nd order IC scattering. In this case, the BATSE and HE lightcurves are very similar. The combined dynamical and radiative approach allows a firm appraisal of GRB HE prompt emission. A diagnostic procedure is presented to identify from observations the dominant emission process and derive constrains on the bulk Lorentz factor, particle density and magnetic field of the outflow.Comment: 28 pages, 20 figures, accepted for publication in A&

    On The Origin of Very High Energy Cosmic Rays

    Full text link
    We discuss the most recent developments in our understanding of the acceleration and propagation of cosmic rays up to the highest energies. In particular we specialize our discussion to three issues: 1) developments in the theory of particle acceleration at shock waves; 2) the transition from galactic to extragalactic cosmic rays; 3) implications of up-to-date observations for the origin of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Article to appear in Modern Physics Letters A, Review Sectio

    Charged-Particle Motion in Electromagnetic Fields Having at Least One Ignorable Spatial Coordinate

    Full text link
    We give a rigorous derivation of a theorem showing that charged particles in an arbitrary electromagnetic field with at least one ignorable spatial coordinate remain forever tied to a given magnetic-field line. Such a situation contrasts the significant motions normal to the magnetic field that are expected in most real three-dimensional systems. It is pointed out that, while the significance of the theorem has not been widely appreciated, it has important consequences for a number of problems and is of particular relevance for the acceleration of cosmic rays by shocks.Comment: 7 pages, emulateapj format, including 1 eps figure, to appear in The Astrophysical Journal, Dec. 10 1998 issu

    Polarization Evolution in Strong Magnetic Fields

    Get PDF
    Extremely strong magnetic fields change the vacuum index of refraction. Although this polarization dependent effect is small for typical neutron stars, it is large enough to decouple the polarization states of photons traveling within the field. The photon states evolve adiabatically and follow the changing magnetic field direction. The combination of a rotating magnetosphere and a frequency dependent state decoupling predicts polarization phase lags between different wave bands, if the emission process takes place well within the light cylinder. This QED effect may allow observations to distinguish between different pulsar emission mechanisms and to reconstruct the structure of the magnetosphere.Comment: 22 pages, 10 figures, accepted for publication in MNRA
    corecore