161 research outputs found

    EXAFS study of rubidium-doped single-wall carbon nanotube bundles

    Get PDF
    International audienceThe local structure around the rubidium ions inserted in single-wall carbon nanotube bundles (Rb-doped SWCNT) is studied by Rb K-edge extended x-ray-absorption fine structure (EXAFS). The dependence of the local order around the rubidium ions is investigated as a function of the time of doping (i.e., as a function of the stoichiometry of the sample). The first coordination shell of the rubidium ions, related to the distance between rubidium and the first nearest-neighboring carbon atoms, has a clear time doping dependence. Comparison between ab initio simulations of the EXAFS spectra and experimental data questions the interstitial site (between three tubes) as the preferential insertion site in SWCNT bundles. The results indicate that the rubidium ions are mainly located inside the tubes and around the bundles. The results are in good agreement with combined x-ray and neutron diffraction experiments performed on the same samples

    Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes

    Get PDF
    Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis

    Chromophore Ordering by Confinement into Carbon Nanotubes

    Get PDF
    International audienceWe report an experimental study on the confinement of oligothiophene derivatives into single-walled carbon nanotubes over a large range of diameter (from 0.68 to 1.93 nm). We evidence by means of Raman spectroscopy and transmission electron microscopy that the supramolecular organizations of the confined oligothiophenes depend on the nanocontainer size. The Raman Radial Breathing Mode frequency is shown to be monitored by both the number of confined molecules into a nanotube section and the competition between oligothiophene/oligothiophene and oligothiophene/tube wall interactions. We finally propose simple Raman criteria to characterize oligothiophene supramolecular organization at the nanoscale

    dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element

    Get PDF
    It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3–HDAC co-repressor complex. GAGA–dSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function

    Progressive Polycomb Assembly on H3K27me3 Compartments Generates Polycomb Bodies with Developmentally Regulated Motion

    Get PDF
    Polycomb group (PcG) proteins are conserved chromatin factors that maintain silencing of key developmental genes outside of their expression domains. Recent genome-wide analyses showed a Polycomb (PC) distribution with binding to discrete PcG response elements (PREs). Within the cell nucleus, PcG proteins localize in structures called PC bodies that contain PcG-silenced genes, and it has been recently shown that PREs form local and long-range spatial networks. Here, we studied the nuclear distribution of two PcG proteins, PC and Polyhomeotic (PH). Thanks to a combination of immunostaining, immuno-FISH, and live imaging of GFP fusion proteins, we could analyze the formation and the mobility of PC bodies during fly embryogenesis as well as compare their behavior to that of the condensed fraction of euchromatin. Immuno-FISH experiments show that PC bodies mainly correspond to 3D structural counterparts of the linear genomic domains identified in genome-wide studies. During early embryogenesis, PC and PH progressively accumulate within PC bodies, which form nuclear structures localized on distinct euchromatin domains containing histone H3 tri-methylated on K27. Time-lapse analysis indicates that two types of motion influence the displacement of PC bodies and chromatin domains containing H2Av-GFP. First, chromatin domains and PC bodies coordinately undergo long-range motions that may correspond to the movement of whole chromosome territories. Second, each PC body and chromatin domain has its own fast and highly constrained motion. In this motion regime, PC bodies move within volumes slightly larger than those of condensed chromatin domains. Moreover, both types of domains move within volumes much smaller than chromosome territories, strongly restricting their possibility of interaction with other nuclear structures. The fast motion of PC bodies and chromatin domains observed during early embryogenesis strongly decreases in late developmental stages, indicating a possible contribution of chromatin dynamics in the maintenance of stable gene silencing

    Promoter repression and 3D-restructuring resolves divergent developmental gene expression in TADs

    Get PDF
    Cohesin loop extrusion facilitates precise gene expression by continuously driving promoters to sample all enhancers located within the same topologically-associated domain (TAD). However, many TADs contain multiple genes with divergent expression patterns, thereby indicating additional forces further refine how enhancer activities are utilised. Here, we unravel the mechanisms enabling a new gene, Rex1, to emerge with divergent expression within the ancient Fat1 TAD in placental mammals. We show that such divergent expression is not determined by a strict enhancer-promoter compatibility code, intra-TAD position or nuclear envelope-attachment. Instead, TAD-restructuring in embryonic stem cells (ESCs) separates Rex1 and Fat1 with distinct proximal enhancers that independently drive their expression. By contrast, in later embryonic tissues, DNA methylation renders the inactive Rex1 promoter profoundly unresponsive to Fat1 enhancers within the intact TAD. Combined, these features adapted an ancient regulatory landscape during evolution to support two entirely independent Rex1 and Fat1 expression programs. Thus, rather than operating only as rigid blocks of co-regulated genes, TAD-regulatory landscapes can orchestrate complex divergent expression patterns in evolution

    Repulsive Forces Between Looping Chromosomes Induce Entropy-Driven Segregation

    Get PDF
    One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without requiring additional energy-consuming processes

    P-Element Homing Is Facilitated by engrailed Polycomb-Group Response Elements in Drosophila melanogaster

    Get PDF
    P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing

    Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao

    Get PDF
    Background: The pathogenesis related protein PR10 (TcPR-10), obtained from the Theobroma cacao-Moniliophthora perniciosa interaction library, presents antifungal activity against M. perniciosa and acts in vitro as a ribonuclease. However, despite its biotechnological potential, the TcPR-10 has the P-loop motif similar to those of some allergenic proteins such as Bet v 1 (Betula verrucosa) and Pru av 1 (Prunus avium). The insertion of mutations in this motif can produce proteins with reduced allergenic power. The objective of the present work was to evaluate the allergenic potential of the wild type and mutant recombinant TcPR-10 using bioinformatics tools and immunological assays. Methodology/Principal Findings: Mutant substitutions (T10P, I30V, H45S) were inserted in the TcPR-10 gene by sitedirected mutagenesis, cloned into pET28a and expressed in Escherichia coli BL21(DE3) cells. Changes in molecular surface caused by the mutant substitutions was evaluated by comparative protein modeling using the three-dimensional structure of the major cherry allergen, Pru av 1 as a template. The immunological assays were carried out in 8-12 week old female BALB/c mice. The mice were sensitized with the proteins (wild type and mutants) via subcutaneous and challenged intranasal for induction of allergic airway inflammation. Conclusions/Significance: We showed that the wild TcPR-10 protein has allergenic potential, whereas the insertion of mutations produced proteins with reduced capacity of IgE production and cellular infiltration in the lungs. On the other hand, in vitro assays show that the TcPR-10 mutants still present antifungal and ribonuclease activity against M. perniciosa RNA. In conclusion, the mutant proteins present less allergenic potential than the wild TcPR-10, without the loss of interesting biotechnological properties. (Résumé d'auteur
    • …
    corecore