1,061 research outputs found
String breaking in Lattice QCD
The separation of a heavy quark and antiquark pair leads to the formation of
a tube of flux, or string, which should break in the presence of light
quark-antiquark pairs. This expected zero temperature phenomenon has proven
elusive in simulations of lattice QCD. We present simulation results that show
that the string does break in the confining phase at nonzero temperature.Comment: LATTICE98(hightemp), 3 pages, 4 figures, LaTe
Observation of large scissors resonance strength in actinides
The orbital M1-scissors resonance (SR) has been measured for the first time
in the quasi-continuum of actinides. Particle-gamma coincidences are recorded
with deuteron and 3He induced reactions on 232Th. The residual nuclei
231,232,233Th and 232,233Pa show an unexpectedly strong integrated strength of
in the Egamma=1.0 - 3.5 MeV region. The increased
gamma-decay probability in actinides due to the SR is important for
cross-section calculations for future fuel cycles of fast nuclear reactors and
may also have impact on stellar nucleosynthesis.Comment: 5 pages and 4 figure
Discharges of past flood events based on historical river profiles
International audienceThis paper presents a case study to estimate peak discharges of extreme flood events of Neckar River in south-western Germany during the 19th century. It was carried out within the BMBF research project RIMAX (Risk Management of Extreme Flood Events). The discharge estimations were made for the flood events of 1824 and 1882 based on historical cross profiles. The 1-D model Hydrologic Engineering Centers River Analysis System (HEC-RAS) was applied with different roughness coefficients. The results are compared (i) with contemporary historical calculations and (ii) in the case of a flood event in 1824 with the discharge simulation by the water balance model LARSIM (Large Area Runoff Simulation Model). These calculations are matched by the HEC-RAS simulation based on the standard roughness coefficients
Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory
We express the Crow-Kimura and Eigen models of quasispecies theory in a
functional integral representation. We formulate the spin coherent state
functional integrals using the Schwinger Boson method. In this formulation, we
are able to deduce the long-time behavior of these models for arbitrary
replication and degradation functions.
We discuss the phase transitions that occur in these models as a function of
mutation rate. We derive for these models the leading order corrections to the
infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy
Complex population dynamics as a competition between multiple time-scale phenomena
The role of the selection pressure and mutation amplitude on the behavior of
a single-species population evolving on a two-dimensional lattice, in a
periodically changing environment, is studied both analytically and
numerically. The mean-field level of description allows to highlight the
delicate interplay between the different time-scale processes in the resulting
complex dynamics of the system. We clarify the influence of the amplitude and
period of the environmental changes on the critical value of the selection
pressure corresponding to a phase-transition "extinct-alive" of the population.
However, the intrinsic stochasticity and the dynamically-built in correlations
among the individuals, as well as the role of the mutation-induced variety in
population's evolution are not appropriately accounted for. A more refined
level of description, which is an individual-based one, has to be considered.
The inherent fluctuations do not destroy the phase transition "extinct-alive",
and the mutation amplitude is strongly influencing the value of the critical
selection pressure. The phase diagram in the plane of the population's
parameters -- selection and mutation is discussed as a function of the
environmental variation characteristics. The differences between a smooth
variation of the environment and an abrupt, catastrophic change are also
addressesd.Comment: 15 pages, 12 figures. Accepted for publication in Phys. Rev.
The statistical mechanics of a polygenic characterunder stabilizing selection, mutation and drift
By exploiting an analogy between population genetics and statistical
mechanics, we study the evolution of a polygenic trait under stabilizing
selection, mutation, and genetic drift. This requires us to track only four
macroscopic variables, instead of the distribution of all the allele
frequencies that influence the trait. These macroscopic variables are the
expectations of: the trait mean and its square, the genetic variance, and of a
measure of heterozygosity, and are derived from a generating function that is
in turn derived by maximizing an entropy measure. These four macroscopics are
enough to accurately describe the dynamics of the trait mean and of its genetic
variance (and in principle of any other quantity). Unlike previous approaches
that were based on an infinite series of moments or cumulants, which had to be
truncated arbitrarily, our calculations provide a well-defined approximation
procedure. We apply the framework to abrupt and gradual changes in the optimum,
as well as to changes in the strength of stabilizing selection. Our
approximations are surprisingly accurate, even for systems with as few as 5
loci. We find that when the effects of drift are included, the expected genetic
variance is hardly altered by directional selection, even though it fluctuates
in any particular instance. We also find hysteresis, showing that even after
averaging over the microscopic variables, the macroscopic trajectories retain a
memory of the underlying genetic states.Comment: 35 pages, 8 figure
Collapse of the N=28 shell closure in Si
The energies of the excited states in very neutron-rich Si and
P have been measured using in-beam -ray spectroscopy from the
fragmentation of secondary beams of S at 39 A.MeV. The low 2
energy of Si, 770(19) keV, together with the level schemes of
P provide evidence for the disappearance of the Z=14 and N=28
spherical shell closures, which is ascribed mainly to the action of
proton-neutron tensor forces. New shell model calculations indicate that
Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let
Factors determining microbial colonization of liquid nitrogen storage tanks used for archiving biological samples
The availability of bioresources is a precondition for life science research, medical applications, and diagnostics, but requires a dedicated quality management to guarantee reliable and safe storage. Anecdotal reports of bacterial isolates and sample contamination indicate that organisms may persist in liquid nitrogen (LN) storage tanks. To evaluate the safety status of cryocollections, we systematically screened organisms in the LN phase and in ice layers covering inner surfaces of storage tanks maintained in different biobanking facilities. We applied a culture-independent approach combining cell detection by epifluorescence microscopy with the amplification of group-specific marker genes and high-throughput sequencing of bacterial ribosomal genes. In the LN phase, neither cells nor bacterial 16S rRNA gene copy numbers were detectable (detection limit, 102 cells per ml, 103 gene copies per ml). In several cases, small numbers of bacteria of up to 104 cells per ml and up to 106 gene copies per ml, as well as Mycoplasma, or fungi were detected in the ice phase formed underneath the lids or accumulated at the bottom. The bacteria most likely originated from the stored materials themselves (Elizabethingia, Janthibacterium), the technical environment (Pseudomonas, Acinetobacter, Methylobacterium), or the human microbiome (Bacteroides, Streptococcus, Staphylococcus). In single cases, bacteria, Mycoplasma, fungi, and human cells were detected in the debris at the bottom of the storage tanks. In conclusion, the limited microbial load of the ice phase and in the debris of storage tanks can be effectively avoided by minimizing ice formation and by employing hermetically sealed sample containers
- …