By exploiting an analogy between population genetics and statistical
mechanics, we study the evolution of a polygenic trait under stabilizing
selection, mutation, and genetic drift. This requires us to track only four
macroscopic variables, instead of the distribution of all the allele
frequencies that influence the trait. These macroscopic variables are the
expectations of: the trait mean and its square, the genetic variance, and of a
measure of heterozygosity, and are derived from a generating function that is
in turn derived by maximizing an entropy measure. These four macroscopics are
enough to accurately describe the dynamics of the trait mean and of its genetic
variance (and in principle of any other quantity). Unlike previous approaches
that were based on an infinite series of moments or cumulants, which had to be
truncated arbitrarily, our calculations provide a well-defined approximation
procedure. We apply the framework to abrupt and gradual changes in the optimum,
as well as to changes in the strength of stabilizing selection. Our
approximations are surprisingly accurate, even for systems with as few as 5
loci. We find that when the effects of drift are included, the expected genetic
variance is hardly altered by directional selection, even though it fluctuates
in any particular instance. We also find hysteresis, showing that even after
averaging over the microscopic variables, the macroscopic trajectories retain a
memory of the underlying genetic states.Comment: 35 pages, 8 figure