209 research outputs found

    A study of the phase transition behavior of mixed ammonium sulfate ? malonic acid aerosols

    No full text
    International audienceThis is a study into the phase transitions of aerosol composed of the ternary system ammonium sulfate (AS) ? malonic acid (MA) ? water using infrared extinction spectroscopy. Twelve compositions were studied in both deliquescence and efflorescence mode experiments. The presence of a MA fraction, by dry mass, (fMA) of 0.1 in an AS aerosol altered the relative humidity at which the phase transitions occur in an atmospherically significant manner. For compositions with 0.25fMAfMA=0.9, the crystallization relative humidity of MA was lowered from RH=6% to less than 1%. Similarly, at fMA=0.4, the AS component did not crystallize. The atmospheric implications of the results are discussed

    A study of the phase transition behavior of internally mixed ammonium sulfate - malonic acid aerosols

    Get PDF
    International audienceThis is a study into the phase transitions of aerosol composed of the ternary system ammonium sulfate (AS) - malonic acid (MA) - water using infrared extinction spectroscopy. Twelve compositions were studied in both deliquescence and efflorescence mode experiments. The presence of a MA fraction, by dry mass, (fMA) of 0.1 in an AS aerosol altered the relative humidity at which the phase transitions occur in an atmospherically significant manner. For compositions with 0.25fMAfMA=0.9, the crystallization relative humidity of MA was lowered from RH=6% to less than 1%. Similarly, at fMA=0.4, the AS component did not crystallize. The atmospheric implications of the results are discussed

    Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    Get PDF
    International audienceThe phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humdity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidites with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently

    Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents

    Get PDF
    Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods. Enhanced-ventilation experiments demonstrate that most of the contaminants reside in the surface reservoirs and not, as expected, in the gas phase. They participate in rapid air-surface partitioning that is much faster than air exchange. Phase distribution calculations are consistent with the observations when assuming simultaneous equilibria between air and large weakly polar and polar absorptive surface reservoirs, with acid-base dissociation in the polar reservoir. Chemical exposure assessments must account for the finding that contaminants that are fully volatile under outdoor air conditions instead behave as semivolatile compounds indoors

    Community based weighing of newborns and use of mobile phones by village elders in rural settings in Kenya: a decentralised approach to health care provision

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying every pregnancy, regardless of home or health facility delivery, is crucial to accurately estimating maternal and neonatal mortality. Furthermore, obtaining birth weights and other anthropometric measurements in rural settings in resource limited countries is a difficult challenge. Unfortunately for the majority of infants born outside of a health care facility, pregnancies are often not recorded and birth weights are not accurately known. Data from the initial 6 months of the Maternal and Neonatal Health (MNH) Registry Study of the Global Network for Women and Children's Health study area in Kenya revealed that up to 70% of newborns did not have exact weights measured and recorded by the end of the first week of life; nearly all of these infants were born outside health facilities.</p> <p>Methods</p> <p>To more completely obtain accurate birth weights for all infants, regardless of delivery site, village elders were engaged to assist in case finding for pregnancies and births. All elders were provided with weighing scales and mobile phones as tools to assist in subject enrollment and data recording. Subjects were instructed to bring the newborn infant to the home of the elder as soon as possible after birth for weight measurement.</p> <p>The proportion of pregnancies identified before delivery and the proportion of births with weights measured were compared before and after provision of weighing scales and mobile phones to village elders. Primary outcomes were the percent of infants with a measured birth weight (recorded within 7 days of birth) and the percent of women enrolled before delivery.</p> <p>Results</p> <p>The recorded birth weight increased from 43 ± 5.7% to 97 ± 1.1. The birth weight distributions between infants born and weighed in a health facility and those born at home and weighed by village elders were similar. In addition, a significant increase in the percent of subjects enrolled before delivery was found.</p> <p>Conclusions</p> <p>Pregnancy case finding and acquisition of birth weight information can be successfully shifted to the community level.</p

    Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions

    Get PDF
    In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30 nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean

    Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic

    Get PDF
    Observations addressing effects of aerosol par- ticles on summertime Arctic clouds are limited. An air- borne study, carried out during July 2014 from Resolute Bay, Nunavut, Canada, as part of the Canadian NETCARE project, provides a comprehensive in situ look into some effects of aerosol particles on liquid clouds in the clean environment of the Arctic summer. Median cloud droplet number concentrations (CDNC) from 62 cloud samples are 10 cm−3 for low-altitude cloud (clouds topped below 200 m) and 101 cm−3 for higher-altitude cloud (clouds based above 200m). The lower activation size of aerosol particles is ≤50nm diameter in about 40% of the cases. Particles as small as 20 nm activated in the higher-altitude clouds consis- tent with higher supersaturations (S) for those clouds inferred from comparison of the CDNC with cloud condensation nu- cleus (CCN) measurements. Over 60 % of the low-altitude cloud samples fall into the CCN-limited regime of Mauritsen et al. (2011), within which increases in CDNC may increase liquid water and warm the surface. These first observations of that CCN-limited regime indicate a positive association of the liquid water content (LWC) and CDNC, but no associ- ation of either the CDNC or LWC with aerosol variations. Above the Mauritsen limit, where aerosol indirect cooling may result, changes in particles with diameters from 20 to 100nm exert a relatively strong influence on the CDNC. Within this exceedingly clean environment, as defined by low carbon monoxide and low concentrations of larger parti- cles, the background CDNC are estimated to range between 16 and 160 cm−3, where higher values are due to activation of particles ≤ 50 nm that likely derive from natural sources. These observations offer the first wide-ranging reference for the aerosol cloud albedo effect in the summertime Arctic

    Aerosol composition and sources in the central Arctic Ocean during ASCOS

    Get PDF
    Measurements of submicron aerosol chemical composition were made over the central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.051 and 0.055 &amp;mu; g m&lt;sup&gt;&amp;minus;3&lt;/sup&gt;, respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33% and 36% of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47% of the sulphate apportioned to marine biogenic sources and 48% to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25 ± 0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it had a longer photochemical lifetime than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources. In particular, given that the factor does not correlate with common tracers of continental influence, we cannot rule out that the organic factor arises from a primary marine source

    Community health workers for ART in sub-Saharan Africa: learning from experience – capitalizing on new opportunities

    Get PDF
    Low-income countries with high HIV/AIDS burdens in sub-Saharan Africa must deal with severe shortages of qualified human resources for health. This situation has triggered the renewed interest in community health workers, as they may play an important role in scaling-up antiretroviral treatment for HIV/AIDS by taking over a number of tasks from the professional health workers. Currently, a wide variety of community health workers are active in many antiretroviral treatment delivery sites
    corecore