39 research outputs found

    The potential of transgenic legumes in integrated bruchid management: assessing the impact on bruchid parasitoids

    Get PDF
    Leguminous seeds are an important staple food and source of nutrition in many countries. Bruchid beetles (Coleoptera: Bruchidae) are responsible for the greatest post-harvest losses to stored legumes. A powerful strategy to control bruchid infestations is the combination of plant resistance factors and biological control provided by parasitoids. Potent resistance factors are α-amylase inhibitors (αAI) which inhibit the starch metabolism in sensitive insects. Genetic engineering has been used to transfer αAI-1 from the common bean (Phaseolus vulgaris) to other leguminous plants which are subsequently protected from the attack by several bruchid species. However, there are concerns regarding the effects that the expressed insecticidal protein might have on non-target organisms. Here, we present an approach to assess the impact of αAI-1 genetically modified legumes on bruchid parasitoids. Keywords: Risk assessment, Genetically modified plants, Non-target organisms; α-amylase inhibitor; αAI-

    La Base de Datos de Fallas Activas en el Cuaternario de Iberia (QAFI v.2.0)

    Get PDF
    ABSTRACT. The Quaternary Active Faults Database of Iberia (QAFI) is an initiative lead by the Institute of Geology and Mines of Spain (IGME) for building a public repository of scientific data regarding faults having documented activity during the last 2.59 Ma (Quaternary). QAFI also addresses a need to transfer geologic knowledge to practitioners of seismic hazard and risk in Iberia by identifying and characterizing seismogenic fault-sources. QAFI is populated by the information freely provided by more than 40 Earth science researchers, storing to date a total of 262 records. In this article we describe the development and evolution of the database, as well as its internal architecture. Additionally, a first global analysis of the data is provided with a special focus on length and slip-rate fault parameters. Finally, the database completeness and the internal consistency of the data are discussed. Even though QAFI v.2.0 is the most current resource for calculating fault-related seismic hazard in Iberia, the database is still incomplete and requires further review.RESUMEN. La Base de Datos de Fallas Activas de Iberia (QAFI) es una iniciativa promovida por el Instituto Geológico y Minero de España (IGME) para construir un repositorio público de información científica sobre fallas con actividad en los últimos 2,59 Ma (Cuaternario). Además, la QAFI persigue establecer una base sobre la que facilitar la transferencia de conocimiento geológico al ámbito tecnológico de la gestión del riesgo sísmico en Iberia, en particular en la identificación y caracterización de fuentes sismogénicas tipo falla. La QAFI se ha construido a partir de la información proporcionada de modo altruista por más de 40 investigadores en ciencias de la Tierra conteniendo actualmente un total de de 262 registros. En este artículo se describe la concepción y evolución de la base de datos, y su arquitectura interna. Además, se ofrece un primer análisis global de los datos que contiene, con especial interés en parámetros tan importantes como la longitud y tasa de deslizamiento de las fallas. Finalmente se discuten dos temas cruciales en cualquier base de datos: su completitud y la homogeneidad de los datos. Se concluye que QAFI v.2.0, pese a ser la fuente más actualizada de información disponible en Iberia sobre peligrosidad sísmica de fallas concretas, dista aun de ser completa, por lo que nuevas revisiones y versiones deberán seguir llevándose a cabo en el futuro

    A barley cysteine-protease inhibitor reduces teh performance of two aphid species in artificial diets and transgenic arabidopsis plants

    Get PDF
    Cystatins from plants have been implicated in plant defense towards insects, based on their role as inhibitors of heterologous cysteine-proteinases. We have previously characterized thirteen genes encoding cystatins (HvCPI-1 to HvCPI-13) from barley (Hordeum vulgare), but only HvCPI-1 C68 → G, a variant generated by direct-mutagenesis, has been tested against insects. The aim of this study was to analyze the effects of the whole gene family members of barley cystatins against two aphids, Myzus persicae and Acyrthosiphon pisum. All the cystatins, except HvCPI-7, HvCPI-10 and HvCPI-12, inhibited in vitro the activity of cathepsin L- and/or B-like proteinases, with HvCPI-6 being the most effective inhibitor for both aphid species. When administered in artificial diets, HvCPI-6 was toxic to A. pisum nymphs (LC50 = 150 μg/ml), whereas no significant mortality was observed on M. persicae nymphs up to 1000 μg/ml. The effects of HvCPI-6 ingestion on A. pisum were correlated with a decrease of cathepsin B- and L-like proteinase activities. In the case of M. persicae, there was an increase of these proteolytic activities, but also of the aminopeptidase-like activity, suggesting that this species is regulating both target and insensitive enzymes to overcome the effects of the cystatin. To further analyze the potential of barley cystatins as insecticidal proteins against aphids, Arabidopsis plants expressing HvCPI-6 were tested against M. persicae. For A. pisum, which does not feed on Arabidopsis, a combined diet-Vicia faba plant bioassay was performed. A significant delay in the development time to reach the adult stage was observed in both species. The present study demonstrates the potential of barley cystatins to interfere with the performance of two aphid specie

    Characterization of Digestive Enzymes of Bruchid Parasitoids–Initial Steps for Environmental Risk Assessment of Genetically Modified Legumes

    Get PDF
    Genetically modified (GM) legumes expressing the α-amylase inhibitor 1 (αAI-1) from Phaseolus vulgaris L. or cysteine protease inhibitors are resistant to several bruchid pests (Coleoptera: Chrysomelidae). In addition, the combination of plant resistance factors together with hymenopteran parasitoids can substantially increase the bruchid control provided by the resistance alone. If the strategy of combining a bruchid-resistant GM legume and biological control is to be effective, the insecticidal trait must not adversely affect bruchid antagonists. The environmental risk assessment of such GM legumes includes the characterization of the targeted enzymes in the beneficial species and the assessment of the in vitro susceptibility to the resistance factor. The digestive physiology of bruchid parasitoids remain relatively unknown, and their susceptibility to αAI-1 has never been investigated. We have detected α-amylase and serine protease activities in all five bruchid parasitoid species tested. Thus, the deployment of GM legumes expressing cysteine protease inhibitors to control bruchids should be compatible with the use of parasitoids. In vitro inhibition studies showed that sensitivity of α-amylase activity to αAI-1 in the parasitoids was comparable to that in the target species. Direct feeding assays revealed that harmful effects of α-amylase inhibitors on bruchid parasitoids cannot be discounted and need further evaluation

    Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design

    Get PDF
    Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant

    The Quaternary Active Faults Database of Iberia (QAFI v.2.0)

    Get PDF
    The Quaternary Active Faults Database of Iberia (QAFI) is an initiative lead by the Institute of Geology and Mines of Spain (IGME) for building a public repository of scientific data regarding faults having documented activity during the last 2.59 Ma (Quaternary). QAFI also addresses a need to transfer geologic knowledge to practitioners of seismic hazard and risk in Iberia by identifying and characterizing seismogenic fault-sources. QAFI is populated by the information freely provided by more than 40 Earth science researchers, storing to date a total of 262 records. In this article we describe the development and evolution of the database, as well as its internal architecture. Aditionally, a first global analysis of the data is provided with a special focus on length and slip-rate fault parameters. Finally, the database completeness and the internal consistency of the data are discussed. Even though QAFI v.2.0 is the most current resource for calculating fault-related seismic hazard in Iberia, the database is still incomplete and requires further review

    Potential Use of a Serpin from Arabidopsis for Pest Control

    Get PDF
    Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L). Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris) were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC50 = 637 µg ml−1). The results indicate that AtSerpin1 is a good candidate for exploitation in pest control

    Infestation of Transgenic Powdery Mildew-Resistant Wheat by Naturally Occurring Insect Herbivores under Different Environmental Conditions

    Get PDF
    A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L.) and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low
    corecore