543 research outputs found

    Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    Full text link
    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is demonstrated using particle-in-cell simulations and an analysis of separatrices in single-electron phase-space, that ion motion can suppress fast electron escape to the vacuum, which would otherwise lead to transition to the relativistic transparency regime. A simple analytical estimate shows that for large laser pulse amplitude a0a_0 the time scale over which ion motion becomes important is much shorter than usually anticipated. As a result, the threshold density above which hole-boring occurs decreases with the charge-to-mass ratio. Moreover, the transition threshold is seen to depend on the laser temporal profile, due to the effect that the latter has on electron heating. Finally, we report a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.Comment: Added new material. 15 pages, 12 figure

    Deviation from the Fourier law in room-temperature heat pulse experiments

    Get PDF
    We report heat pulse experiments at room temperature that cannot be described by Fourier's law. The experimental data is modelled properly by the Guyer--Krumhansl equation, in its over-diffusion regime. The phenomenon is due to conduction channels with differing conductivities, and parallel to the direction of the heat flux.Comment: 9 pages, 4 figure

    Electronic States of Graphene Grain Boundaries

    Get PDF
    We introduce a model for amorphous grain boundaries in graphene, and find that stable structures can exist along the boundary that are responsible for local density of states enhancements both at zero and finite (~0.5 eV) energies. Such zero energy peaks in particular were identified in STS measurements [J. \v{C}ervenka, M. I. Katsnelson, and C. F. J. Flipse, Nature Physics 5, 840 (2009)], but are not present in the simplest pentagon-heptagon dislocation array model [O. V. Yazyev and S. G. Louie, Physical Review B 81, 195420 (2010)]. We consider the low energy continuum theory of arrays of dislocations in graphene and show that it predicts localized zero energy states. Since the continuum theory is based on an idealized lattice scale physics it is a priori not literally applicable. However, we identify stable dislocation cores, different from the pentagon-heptagon pairs, that do carry zero energy states. These might be responsible for the enhanced magnetism seen experimentally at graphite grain boundaries.Comment: 10 pages, 4 figures, submitted to Physical Review

    One dimensional drift-diffusion between two absorbing boundaries: application to granular segregation

    Full text link
    Motivated by a novel method for granular segregation, we analyze the one dimensional drift-diffusion between two absorbing boundaries. The time evolution of the probability distribution and the rate of absorption are given by explicit formulae, the splitting probability and the mean first passage time are also calculated. Applying the results we find optimal parameters for segregating binary granular mixtures.Comment: RevTeX, 5 pages, 6 figure

    Twisted N=8, D=2 super Yang-Mills theory as example of a Hodge-type cohomological theory

    Get PDF
    It is shown that the dimensional reduction of the N_T=2, D=3 Blau-Thompson model to D=2, i.e., the novel topological twist of N=8, D=2 super Yang-Mills theory, provides an example of a Hodge-type cohomological theory. In that theory the generators of the topological shift, co-shift and gauge symmetry, together with a discrete duality operation, are completely analogous to the de Rham cohomology operators and the Hodge *-operation.Comment: 8 pages, Late

    Inter-layer spin diffusion and electric conductivity in the organic conductors {\kappa}-ET2-Cl and {\kappa}-ET2-Br

    Full text link
    A high frequency (111.2-420 GHz) electron spin resonance study of the inter-layer (perpendicular) spin diffusion as a function of pressure and temperature is presented in the conducting phases of the layered organic compounds, {\kappa}-(BEDT-TTF)2-Cu[N(CN)2]X ({\kappa}-ET2-X), X=Cl or Br. The resolved ESR lines of adjacent layers at high temperatures and high frequencies allows for the determination of the inter-layer cross spin relaxation time, Tx and the intrinsic spin relaxation time, T2 of single layers. In the bad metal phase spin diffusion is two-dimensional, i.e. spins are not hopping to adjacent layers within T2. Tx is proportional to the perpendicular resistivity at least approximately, as predicted in models where spin and charge excitations are tied together. In {\kappa}-ET2-Cl, at zero pressure Tx increases as the bad metal-insulator transition is approached. On the other hand, Tx decreases as the normal metal and superconducting phases are approached with increasing pressure and/or decreasing temperature.Comment: 18 pages, 11 figure
    • 

    corecore