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Abstract. We report heat pulse experiments at room temperature that can-
not be described by Fourier’s law. The experimental data is modelled properly

by the Guyer–Krumhansl equation, in its over-diffusion regime. The phenom-

enon is due to conduction channels with differing conductivities, and parallel
to the direction of the heat flux.

1. Introduction

Fourier’s law of heat conduction is one of the most important laws of physics
in our everyday life. Energy consumption of heating systems, power plants and
industrial processes are designed and manufactured with the help of the classic
formula, expressing that the heat flux q is proportional to the temperature gradient:

q = −k∇T. (1)

Here, k is the heat conduction coefficient. However, at low temperatures and in
small systems Fourier’s law is violated. The most important related phenomenon is
called second sound, that is when temperature disturbances propagate like damped
waves. The Maxwell–Cattaneo–Vernotte (MCV) equation [1, 2, 3] introduces the
inertia of heat, adding a time derivative term to the Fourier equation:

τ q̇ + q = −k∇T. (2)

The coefficient of the time derivative, τ , is called relaxation time. This equation
is the simplest model of the second sound phenomenon observed first in liquid
Helium [4]. Later on, the analysis of the theoretical background [5] resulted in the
observation of second sound also in solid crystals, via properly designed experiments
[6, 7, 8, 9]. Here, the heat pulse technology was crucial for the sensitive detection.
This experimental technique is practically important in itself, in the form of the
flash method, a standard engineering procedure for determining thermal diffusivity
[10]. Theoretical aspects of heat pulse experiments have been shortly reviewed in
[11].

The MCV equation is not the last theoretical development, there were many
independent suggestions that further generalize the Fourier law, predicting addi-
tional terms on various grounds [12, 13, 14, 15, 16, 17]. The two simplest, and
most discussed models are the Guyer–Krumhansl equation and the Jeffreys type
equation [5, 12] the two coinciding in one spatial dimension.

The low-temperature heat pulse measurements in dielectric crystals exploit well
understood microscopic mechanisms of phonon propagation [18]. However, the
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phenomenological considerations, especially the theory of non-equilibrium thermo-
dynamics, predicts a universal, mechanism-independent background of the MCV
equation, where the deviation from local equilibrium is restricted only by the sec-
ond law of thermodynamics [19, 20].

These ideas, in particular the universality, motivated several authors for find-
ing non-Fourier heat conduction at room temperature in heterogeneous materials,
too. The first experiments reported positive results [21, 22], but these results were
not confirmed later, more properly, the attempts of exact reproduction of these
experiments are contradictory [23, 24, 25, 26].

However, genuine thermodynamic theories, like Extended Irreversible Thermo-
dynamics, predicted universality originally only with respect to the MCV equation.
That may be the reason that, in the above-mentioned early experiments, the au-
thors have been looking for qualitative phenomena characteristic only to the MCV
equation: delay in the arrival time of the pulse and the corresponding abrupt tem-
perature change.

The thermodynamic derivation of the MCV equation assumes heat flux depen-
dent entropy density. One can obtain a more complete characterisation of the
deviation from local equilibrium by considering a generalized form of the entropy
current density as well [27, 28]. In this respect, the idea of current multipliers is
particularly convenient for solving the entropy inequality [29, 30]. For heat conduc-
tion, one obtains a general theory that incorporates all viable known constitutive
relations, including MCV and Guyer–Krumhansl (GK). Moreover, it provides a
promising modelling framework to reproduce combined second sound and ballistic
heat propagation effects [31, 32]. The universal extension of the MCV equation
motivated us to look for non-MCV type extension of the Fourier law in experi-
mental observations where the wave equation signatures are suppressed. In the
last years, we performed an experimental-theoretical research in order to identify
suitable qualitative signatures of detecting non-Fourier heat conduction beyond the
MCV equation [33, 34, 35].

In this paper, we show a simple heat pulse experiment at room temperature on
a macroscopic sample, where the heterogeneities result in deviation from Fourier
law. However, this deviation cannot be modelled by the MCV equation, rather the
observed characteristic non-Fourier phenomenon is typical for the GK equation.

The paper is organized as follows. In the next section, the experimental back-
ground is described. Then the inverse problem is formulated. In the third section
we analyse a representative measurement and determine the parameters of both
the Fourier and of the GK equations fit to the experiment. Finally, we summarize
and discuss the results.

2. Heat pulse experiments at room temperature

Our experimental device had been developed at the Budapest University of Tech-
nology and Economics, Department of Energy Engineering for industrial use of the
flash method, and has been modified for the recent experiments. A flash lamp
serves as the heat pulse source at the front end of the sample, and temperature is
measured by a pin-thermocouple (K type) at the rear end. The thermocouple and
the detector part are insulated from the heat pulse and from the electromagnetic
noises. The heat pulse is measured directly at the front end by a photovoltaic cell,
providing the triggering signal for the data acquisition. A typical pulse shape can
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be seen in Figure 1. The electric signal is amplified by a special variable pream-
plifier and is registered by a digital storage oscilloscope (Tektronix, TDS2014B).

Figure 1. The typical form of the heat pulse, measured by a
photovoltaic cell.

Figure 2. Sketch of the heat pulse experiments.

A sketch of the experimental setup is shown in Figure 2, and a photo of a
specimen in the sample holder can be seen in Figure 3.

The studied specimen in the experiment has a cylindrical shape with L = 3.9mm
thickness and d = 19mm diameter. The specimen is composed of aluminium (5
µm) and polystyrol (15 µm) layers, arranged parallel to the heat pulse. The front
side is painted black to ensure uniform boundary conditions as well as to eliminate
the transparency of the sample. At the rear side a silver painting is applied to
ensure the thermocouple measures an effective temperature of the heterogeneous
material.
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Figure 3. Photo of the sample holder with the inserted specimen.
The photovoltaic detector is on the right hand side.

The experimental device was calibrated using several samples with known heat
diffusivity. The measurement was performed at 21◦C room temperature.

3. The Guyer–Krumhansl equation

We have solved the inverse problem both with the Fourier equation and with the
GK equation of heat conduction, and determined the parameters of the differential
equations according to the experimental data. The following system of partial
differential equations was applied:

ρc
∂T

∂t
+
∂q

∂x
= 0, (3)

τ
∂q

∂t
+ q + k

∂T

∂x
− l2 ∂

2q

∂x2
= 0. (4)

Here first equation is the balance of internal energy, where ρ is the density, c is
the specific heat. t denotes time and x the spatial coordinate in the direction of
the heat propagation. The second equation is the GK equation in one dimension,
where k is the Fourier heat conduction coefficient, τ is the relaxation time and l2

is a material parameter of the GK equation, which is nonnegative according to the
second law [36], and is expressed with the help of a characteristic length scale l. In
what follows we solve the above system for the temperature and heat flux fields,
T (x, t) and q(x, t), respectively.

Eq. 4 originally was derived by Guyer and Krumhansl using the linearized
Boltzmann equation in order to model low-temperature heat conduction in solids
[5]. Later on it was derived in the framework of kinetic theory by more general
assumptions [37, 18]. Nowadays it is extensively researched in small systems [38,
39]. The GK equation was also obtained in the framework on non-equilibrium
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thermodynamics, assuming a minimal deviation from local equilibrium both in
entropy density and in entropy current density [36, 31].

It is remarkable that one can obtain the MCV equation when l = 0, but Fourier-
type solutions of the system (3)–(4) are obtained whenever, with the thermal dif-
fusivity α = k

ρc ,

l2

τ
= α. (5)

Hereafter we will call this formula the Fourier resonance condition. If l2

τ > α then

the solutions of (3)–(4) show wavelike characteristics while, if l2

τ < α then the
solutions are over-diffusive [40, 31]. This is due to the hierarchical structure of the
system of equations [41, 42].

We are looking for solutions of (3)–(4) with heat pulse boundary condition at
the front side. The heat pulse is introduced in the following form:

q0(t) = q(x = 0, t) =

{
qmax

(
1− cos

(
2π · ttp

))
if 0 < t ≤ tp,

0 if t > tp.

This pulse profile is different from the measured one, see Figure 1, but the length
of the pulse is much shorter than the characteristic timescale of the experiment so
the particular shape is insignificant. For our experiment tp = 0.01s. The backside
boundary is considered adiabatic q(L, t) = 0. Initially, the temperature distribution
is uniform and the heat flux is zero along the sample, that is, T (x, 0) = T0(= 21◦C)
and q(x, 0) = 0.

It is convenient to introduce a dimensionless form of the equations (3)–(4), by

the following definitions of the dimensionless variables t̂, x̂, T̂ , q̂, Q̂ for time, position,
temperature, heat flux and the internal variable, respectively:

t̂ =
t

tp
, x̂ =

x

L
;

q̂ =
q

qmax
, where qmax =

1

tp

∫ tp

0

q0(t)dt;

T̂ =
T − T0

Tend − T0
, where Tend = T0 +

qmaxtp
ρcL

. (6)

The dimensionless parameters are, consequently,

τ̂ =
τ

tp
; α̂ =

ktp
ρcL2

; l̂ =
l

L
. (7)

Accordingly, the nondimensional form of the equations is

∂T̂

∂t̂
+
∂q̂

∂x̂
= 0, (8)

τ̂
∂q̂

∂t̂
+ q̂ + α̂

∂T̂

∂x̂
− l̂2 ∂

2q̂

∂x̂2
= 0. (9)

The boundary and initial conditions are:

q̂0(t) = q̂(x = 0, t) =

{
1− cos

(
2π · t̂

)
if 0 < t̂ ≤ 1,

0 if t̂ > 1.

q̂(1, t̂) = 0, T̂ (x̂, 0) = 0 and q̂(x̂, 0) = 0. For the Fourier equation, the last initial
condition is not necessary.
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4. Solution of the inverse problem

The system of equations (8)–(9) is remarkably stable, and this is an advantage
for the calculation of the parameters best fitting to a given measurement data.
These calculations were performed with the built-in nonlinear regression algorithm
of Mathematica 8.0, using the solution of the system of partial differential equations
as an input function. Figure 4 demonstrates our results.

Figure 4. On the left hand side, the best fitted Fourier solution
is presented, and on the right hand side the best fitted GK one is
visible. The thin noisy line is the experimentally measured data of
the backside temperature as the function of time. The solid lines
are the solutions of the Fourier equation with thermal diffusivity
α̂ = 0.001409± 5 · 10−6 on the left hand side, and that of the GK
modell (8)–(9) with α̂ = 0.001288 ± 3 · 10−6, τ̂ = 50.8 ± 1.2, and

l̂2 = 0.100± 0.002.

In both figures, the thin, noisy curve is a typical measurement data of a hetero-
geneous sample, comprising 2250 data points1. Both the temperature and the time
scales are nondimensional. The solid curves represents the best approximation of
the data by the Fourier equation on the left figure and that of the GK equation on
the right figure. For the Fourier solution the thermal diffusivity is the only param-
eter, the regression analysis gives α = [2.144±0.008] ·10−6m2/s, with R2 = 0.9977.
For the GK heat conduction model the best approximation of the data is given
by material parameters α = [1.958 ± 0.004] · 10−6m2/s, τ = [0.51 ± 0.01]s, and
l2 = [1.53± 0.03] · 10−6m2. The dimensional standard errors of the statistical anal-
ysis are calculated assuming exact L and tp values. The goodness of the regression
is better than that of the Fourier one, as it is visible in the figures as well as by the
higher R2 = 0.9996 value.

One may observe that the arrival time of the best fit Fourier signal is longer, than
the experimentally observed value. The prediction of the MCV equation is a delay
compared to Fourier’s model. Therefore our experimental observations exclude the
MCV equation.

5. Discussion

We have presented a heat pulse experiment at room temperature in a macro-
scopic, heterogeneous specimen, that cannot be modelled properly either by the

1The data set is enclosed to the arXiv publication.
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Fourier type or the MCV type heat conduction, but can be described by the GK
equation in its over-diffusive regime. Over-diffusive GK signals show larger appar-
ent propagation speed compared to the best Fourier approximation, in contrast to
the MCV equation.

The heterogeneity of the considered specimen is parallel to the heat flux (see
Figure 2), providing a simple explanation of the phenomenon in terms of coupled
heat conductors, where the temperature difference is maintained by the differing
conductivities and the respective boundary conditions. In this respect the com-
parison to the low-temperature experiments can be instructive because there the
specific parameter of the GK equation, l, is well interpreted. However, according
to the universality of the non-equilibrium thermodynamic model, the form of the
equation is independent of the particular mechanism. Therefore, the practical ap-
plicability of the simple modelling framework and of its established parameters is
not restricted to this specific type of heterogeneity. On the other hand, the iden-
tification of particular mesomechanisms is extremely important also because then
the corresponding material parameters can be calculated and designed.
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[33] B. Czél, T. Fülöp, Gy. Gróf, and P. Ván. Comparison of temperature responses of the laser

flash method in case of parabolic and hyperbolic heat conduction models. In Dombi Sz., editor,
11th International Conference on Heat Engines and Environmental Protection, Balatonfred,

pages 133–139, Budapest, 2013. BME, Dep. of Energy Engineering.
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