37 research outputs found

    Probing wave-optics effects and dark-matter subhalos with lensing of gravitational waves from massive black holes

    Full text link
    The Laser Interferometer Space Antenna (LISA) will detect gravitational waves (GWs) emitted by massive black hole binaries (MBHBs) in the low-frequency (\simmHz) band. Low-mass lenses, such as dark-matter (DM) subhalos, have sizes comparable to the wavelength of these GWs. Encounters with these lenses produce wave-optics (WO) effects that alter waveform phase and amplitude. Thus, a single event with observable WO effects can be used to probe the lens properties. In this paper, we first compute the probability of observing WO effects in a model-agnostic way. We perform parameter estimation over approximately 1000 MBHBs with total mass, mass ratio, and redshift spanning the ranges relevant to LISA. We then calculate lensing rates using three semi-analytical models of MBHB populations. In both cases, we use a waveform model that includes merger, ringdown, and higher-order modes. We use two lens population models: the theory-based Press-Schechter halo mass function and an observation-based model derived from Sloan Digital Sky Survey, called the measured velocity function. We find that the probability of detecting WO effects can be as large as 3%\sim 3\%, 1.5%\sim1.5\%, and 1%\sim 1 \% at 1σ1\sigma, 3σ3\sigma, and 5σ5\sigma confidence levels, respectively. The most optimistic MBHB population model yields 8\sim 8, 4\sim 4, and 3\sim 3 events at the same confidence levels, while the rates drop to 0.01\sim 0.01 in the more pessimistic scenarios. The most likely lens masses probed by LISA are in the range (103,108)M(10^3, 10^8)\, M_{\odot}, and the most probable redshifts are in the range (0.3,1.7)(0.3, 1.7). Therefore, LISA observations of WO effects can probe DM subhalos, complementing strong lensing and other observations.Comment: 24 pages, 15 figures. Comments are welcom

    TESLA-X: An effective method to search for sub-threshold lensed gravitational waves with a targeted population model

    Full text link
    Strong gravitational lensing can produce copies of gravitational-wave signals from the same source with the same waveform morphologies but different amplitudes and arrival times. Some of these strongly-lensed gravitational-wave signals can be demagnified and become sub-threshold. We present TESLA-X, an enhanced approach to the original GstLAL-based TargetEd Subthreshold Lensing seArch (TESLA) method, for improving the detection efficiency of these potential sub-threshold lensed signals. TESLA-X utilizes lensed injections to generate a targeted population model and a targeted template bank. We compare the performance of a full template bank search, TESLA, and TESLA-X methods via a simulation campaign, and demonstrate the performance of TESLA-X in recovering lensed injections, particularly targeting a mock event. Our results show that the TESLA-X method achieves a maximum of 20%\sim 20\% higher search sensitivity compared to the TESLA method within the sub-threshold regime, presenting a step towards detecting the first lensed gravitational wave. TESLA-X will be employed for the LIGO-Virgo-KAGRA's collaboration-wide analysis to search for lensing signatures in the fourth observing run

    The missing link in gravitational-wave astronomy: A summary of discoveries waiting in the decihertz range

    Get PDF
    Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the ∼10–103 Hz band of ground-based observatories and the ∼10−4–10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (∼102–104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.publishedVersio

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore