421 research outputs found
Trophoblast gene expression: Transcription factors in the specification of early trophoblast
A zone of trophoblast specification is established when the embryo is a morula, presumably reflecting a unique combination of transcription factors in that zone of cells and the influence of various environmental cues and growth factors on them. A key first step in this process of specification is the down-regulation of Oct4, a transcription factor that acts as a negative regulator of trophoblast specification and of genes normally up-regulated as the trophectoderm first forms. The transcription factors believed to have a positive association with trophectoderm specification have been inferred primarily in two ways: by their expression patterns in embryos, ES cells and TS cells and by the consequences of gene disruption on embryonic development. Many of these transcription factors also control the expression of genes characteristically expressed in trophoblast but not in the epiblast, primitive endoderm and their derivatives. ES and TS cells from the mouse and other species are beginning to provide insights into the changes in gene expression that accompany lineage specification and the subsequent post-specification events that lead to functional trophoblast derivatives
Derivation and characterization of LIF and FGF2 dependent Porcine Induced Pluripotent Stem Cells [abstract]
Comparative Medicine - OneHealth and Comparative Medicine Poster SessionAuthentic embryonic stem cells (ESC) have probably never been derived from the inner cell mass (ICM) of pig, despite over 25 years of effort. Recently, several groups, including ours, have reported derivation of induced pluripotent stem cells (iPSC) from swine by reprogramming somatic cells with a combination of four factors (OCT4, SOX2, KLF4, C-MYC) delivered by retroviral transduction. The piPSC resembled FGF2- dependent human (h) ESC and are likely to advance swine as a model in biomedical research, since grafts could potentially be matched to the animal that donated the cells for re-programming. The dependence of piPSC on FGF2 also draws parallels to murine pluripotent stem cells derived from advanced epiblast, so-called 'epiblast stem cells'. Indeed, an emerging concept is that there are two kinds of ESC, one dependent on FGF2 and not competent to contribute to germ-line chimeras, the other upon LIF and germ-line competent. The objective of our recent investigations has been to develop LIF- dependent piPSC by using the same reprogramming factors but selecting the colonies on a modified LIF- medium supplemented with two kinase inhibitors, CHIR99021, which inhibits GSK-3beta, and kenpaullone, which inhibits both GSK-3beta and CDK1. The LIF-dependent piPSC, derived here from outgrowths of umbilical cord mesenchyme, expressed markers consistent with pluripotency and bore a striking resemblance to ICM-derived murine ESC in colony morphology, culture characteristics, and short cell cycle time. Currently, the ability of LIF-piPSC to give rise to teratoma and chimeras is under investigation. Supported by Missouri Life Sciences Board Grant 00022147 and NIH grant HD21896
Differential regulation of NAB corepressor genes in Schwann cells
<p>Abstract</p> <p>Background</p> <p>Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB) corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development.</p> <p>Results</p> <p>To test the mechanism of NAB regulation in Schwann cells, transfection assays revealed that both <it>Nab1 </it>and <it>Nab2 </it>promoters are activated by Egr2 expression. Furthermore, direct binding of Egr2 at these promoters was demonstrated in vivo by chromatin immunoprecipitation analysis of myelinating sciatic nerve, and binding of Egr2 to the <it>Nab2 </it>promoter was stimulated by neuregulin in primary Schwann cells. Although Egr2 expression activates the <it>Nab2 </it>promoter more highly than <it>Nab1</it>, we surprisingly found that only <it>Nab1 </it>– but not <it>Nab2 </it>– expression levels were reduced in sciatic nerve from Egr2 null mice. Analysis of the <it>Nab2 </it>promoter showed that it is also activated by ETS proteins (Ets2 and Etv1/ER81) and is bound by Ets2 in vivo.</p> <p>Conclusion</p> <p>Overall, these results indicate that induction of <it>Nab2 </it>expression in Schwann cells involves not only Egr2, but also ETS proteins that are activated by neuregulin stimulation. Although <it>Nab1 </it>and <it>Nab2 </it>play partially redundant roles, regulation of <it>Nab2 </it>expression by ETS factors explains several observations regarding regulation of NAB genes. Finally, these data suggest that NAB proteins are not only feedback inhibitors of Egr2, but rather that co-induction of Egr2 and NAB genes is involved in forming an Egr2/NAB complex that is crucial for regulation of gene expression.</p
Vulnerability of primitive human placental trophoblast to Zika virus
Infection of pregnant women by Asian lineage strains of Zika virus (ZIKV) has been linked to brain abnormalities in their infants, yet it is uncertain when during pregnancy the human conceptus is most vulnerable to the virus. We have examined two models to study susceptibility of human placental trophoblast to ZIKV: cytotrophoblast and syncytiotrophoblast derived from placental villi at term and colonies of trophoblast differentiated from embryonic stem cells (ESC). The latter appear to be analogous to the primitive placenta formed during implantation. The cells from term placentas, which resist infection, do not express genes encoding most attachment factors implicated in ZIKV entry but do express many genes associated with antiviral defense. By contrast, the ESC-derived trophoblasts possess a wide range of attachment factors for ZIKV entry and lack components of a robust antiviral response system. These cells, particularly areas of syncytiotrophoblast within the colonies, quickly become infected, produce infectious virus and undergo lysis within 48 h after exposure to low titers (multiplicity of infection > 0.07) of an African lineage strain (MR766 Uganda: ZIKVU) considered to be benign with regards to effects on fetal development. Unexpectedly, lytic effects required significantly higher titers of the presumed more virulent FSS13025 Cambodia (ZIKVC). Our data suggest that the developing fetus might be most vulnerable to ZIKV early in the first trimester before a protective zone of mature villous trophoblast has been established. Additionally, MR766 is highly trophic toward primitive trophoblast, which may put the early conceptus of an infected mother at high risk for destruction
Porcine induced pluripotent stem cells (piPSC) for expanding the use of swine in biomedical research
Comparative Medicine - OneHealth and Comparative Medicine Poster SessionOur goal is to create porcine pluripotent stem cells, i.e. ones capable of differentiating into all cell types of the body that can expand the use of swine as a biomedical model for studying human disease. It is well established that mouse embryonic stem cells (ESC) are an excellent source of material for successful cloning and for incorporation into chimeras. However, the establishment of porcine ESC from the embryos has proven to be elusive. There has been a similar lack of success with other ungulate species. Establishing a technology for deriving induced pluripotent stem cells (iPSC) from farm animals will allow the gene knock-in/knock-out methods that have revolutionized mouse genetics to be applied to farm species. Importantly pig is a potentially useful model for studying human pathologies due to similarities in organ size, immunology and whole animal physiology between the two species. If the safety and efficacy of stem cell transplantation is to be tested in an animal model before being applied to humans, the pig would likely be a species of choice. The ability to derive porcine (p) iPSC lines from a particular outbred animal and conduct tissue transplantation on the same pig later and follow the success of the transplant over the course of months or even years would be a particularly valuable advance. Additionally the ability to provide piPSC from animals with valuable traits would provide a permanent source of cells for clonal propagation that would likely avoid the inefficiencies and problems arising from somatic cell nuclear transfer (SCNT), where the vast majority of cloned offspring die or are developmentally abnormal. We have created piPSC from embryonic fibroblasts and umbilical cord mesenchyme by a similar strategy used for the mouse and human, namely ectopically expressing reprogramming genes in somatic cells. The piPSC resemble human ESC, express the typical gene and surface antigen markers of ESC, proliferate continuously in culture, possess high telomerase activity, form embryoid bodies, and differentiate along the three main germ line lineages. Our aim is to demonstrate that piPSC can be directed to differentiate along defined lineages, specifically towards neuronal tissue, hematopoietic lineages and various mesoderm derivatives including cardiomyocytes by using protocols based on those used successfully with human and murine ESC. These experiments will allow such cells to be used for tissue grafts that are matched genetically to recipients and tested for their safety in transplantation. We shall also establish parameters for routine gene targeting in piPSC, with the ultimate goal of creating genetic models for human diseases where mouse models are inappropriate. In summary, the piPSC lines developed will have enormous utility for exploiting the pig as a model in human pre-clinical applications. Supported by Missouri Life Sciences Board Grant 00022147 and NIH grant HD2189
A six-inhibitor culture medium for improving naïve-type pluripotency of porcine pluripotent stem cells
Understanding essential signaling network requirements and making appropriate adjustments in culture conditions are crucial if porcine pluripotent stem cells (PSC) are to achieve their full potential. Here, we first used two protein factors (LIF and FGF2) and kinase inhibitor combinations in attempts to convert primed type lentiviral-reprogrammed porcine induced PSC (Lv-piPSC) into nai\u308ve-like state and developed a medium called FL6i. In addition to FGF2 and LIF, this medium contained inhibitors of MAPK14, MAPK8, TGFB1, MAP2K1, GSK3A and BMP. Crucially, the usual TGFB1 and BMP4 protein components of many stem cell media were replaced in FL6i with inhibitors of TGFB1 and BMP. With this medium, Lv-piPSC were readily transformed from their original primed state into cells that formed colonies with typical features of nai\u308ve-state stem cells. The FL6i medium also assisted generation of nai\u308ve-type piPSC lines from porcine embryonic fibroblasts with non-integrating episomal plasmids (Epi-piPSC). These lines, despite retaining variable amounts of vector DNA, expressed higher endogenous pPOU5F1 and pSOX2 than Lv-piPSC. They have been cultured without obvious morphological change for >45 passages and retained pluripotent phenotypes in terms of upregulation of genes associated with pluripotency, low expression of genes linked to emergence of somatic cell lineages, and ability to generate well differentiated teratomas in immune-compromised mice. FL6i conditions, therefore, appear to support elevated pluripotent phenotypes. However, FL6i was less able to support the generation of embryonic stem cells from porcine blastocysts. Although colonies with dome-shaped morphologies were evident and the cells had some gene expression features linked to pluripotency, the phenotypes were ultimately not stable. Pathway analysis derived from RNAseq data performed on the various cell lines generated in this study suggest the benefits of employing the FL6i medium on porcine cells reside in its ability to minimize TGFB1 and BMP signaling, which would otherwise de-stabilize the stem cell state
Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia.
Pre-eclampsia is a serious complication of pregnancy that can affect both maternal and fetal outcomes. Early-onset pre-eclampsia (EOPET) is a severe form of pre-eclampsia that is associated with altered physiological characteristics and gene expression in the placenta. DNA methylation is a relatively stable epigenetic modification to DNA that can reflect gene expression, and can provide insight into the mechanisms underlying such expression changes. This case-control study focused on DNA methylation and gene expression of whole chorionic villi samples from 20 EOPET placentas and 20 gestational age-matched controls from pre-term births. DNA methylation was also assessed in placentas affected by late-onset pre-eclampsia (LOPET) and normotensive intrauterine growth restriction (nIUGR). The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation at >480 000 cytosine-guanine dinucleotide (CpG) sites. The Illumina HT-12v4 Expression BeadChip was used to assess gene expression of >45 000 transcripts in a subset of cases and controls. DNA methylation analysis by pyrosequencing was used to follow-up the initial findings in four genes with a larger cohort of cases and controls, including nIUGR and LOPET placentas. Bioinformatic analysis was used to identify overrepresentation of gene ontology categories and transcription factor binding motifs. We identified 38 840 CpG sites with significant (false discovery rate 12.5% methylation difference compared with the controls. Significant sites were enriched at the enhancers and low CpG density regions of the associated genes and the majority (74.5%) of these sites were hypomethylated in EOPET. EOPET, but not associated clinical features, such as intrauterine growth restriction (IUGR), presented a distinct DNA methylation profile. CpG sites from four genes relevant to pre-eclampsia (INHBA, BHLHE40, SLC2A1 and ADAM12) showed different extent of changes in LOPET and nIUGR. Genome-wide expression in a subset of samples showed that some of the gene expression changes were negatively correlated with DNA methylation changes, particularly for genes that are responsible for angiogenesis (such as EPAS1 and FLT1). Results could be confounded by altered cell populations in abnormal placentas. Larger sample sizes are needed to fully address the possibility of sub-profiles of methylation within the EOPET cohort. Based on DNA methylation profiling, we conclude that there are widespread DNA methylation alterations in EOPET that may be associated with changes in placental function. This property may provide a useful tool for early screening of such placentas. This study identifies DNA methylation changes at many loci previously reported to have altered gene expression in EOPET placentas, as well as in novel biologically relevant genes we confirmed to be differentially expressed. These results may be useful for DNA- methylation-based non-invasive prenatal diagnosis of at-risk pregnancies
SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion.
TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta
- …