11 research outputs found

    An Indo-Pacific coral spawning database.

    Full text link
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats

    Get PDF
    In the past decade, novel methods using engineered receptors have enabled researchers to manipulate neuronal activity with increased spatial and temporal specificity. One widely used chemogenetic method in mice and rats is the DREADD (designer receptors exclusively activated by designer drugs) system in which a mutated muscarinic G protein-coupled receptor is activated by an otherwise inert synthetic ligand, clozapine-N-oxide (CNO). Recently, the Roth laboratory developed a novel inhibitory DREADD in which a mutated kappa-opioid receptor (KORD) is activated by the pharmacologically inert drug salvinorin B (SalB; Vardy et al, 2015). They demonstrated the feasibility of using KORD to study brain circuits involved in motivated behavior in mice. Here, we used behavioral, electrophysiological, and neuroanatomical methods to demonstrate the feasibility of using the novel KORD to study brain circuits involved in motivated behavior in rats. In Exp. 1, we show that SalB dose-dependently decreased spontaneous and cocaine-induced locomotor activity in rats expressing KORD to midbrain (ventral tegmental area/substantia nigra). In Exp. 2, we show that SalB completely inhibited tonic firing in KORD-expressing putative dopamine neurons in midbrain. In Exp. 3, we used a 'retro-DREADD' dual-virus approach to restrict expression of KORD in ventral subiculum neurons that project to nucleus accumbens shell. We show that KORD activation selectively decreased novel context-induced Fos expression in this projection. Our results indicate that the novel KORD is a promising tool to selectively inactivate brain areas and neural circuits in rat studies of motivated behavior

    An Indo-Pacific coral spawning database

    Get PDF
    The authors would like to thank the ARC Centre of Excellence for Coral Reef Studies for funding the Coral Spawning Workshop in Singapore in 2017 where the database was initially developed.The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.Publisher PDFPeer reviewe

    Key questions for research and conservation of mesophotic coral ecosystems and temperate mesophotic ecosystems.

    No full text
    Mesophotic coral ecosystems (MCEs) and temperate mesophotic ecosystems (TMEs) have received increasing research attention during the last decade as many new and improved methods and technologies have become more accessible to explore deeper parts of the ocean. However, large voids in knowledge remain in our scientific understanding, limiting our ability to make scientifically based decisions for conservation and management of these ecosystems. Here, we present a list of key research and conservation questions to enhance progress in the field. Questions were generated following an initial open call to MCE and TME experts, representing a range of career levels, interests, organizations (including academia, governmental, and nongovernmental), and geographic locations. Questions were refined and grouped into eight broad themes: (1) Distribution, (2) Environmental and Physical Processes, (3) Biodiversity and Community Structure, (4) Ecological Processes, (5) Connectivity, (6) Physiology, (7) Threats, and (8) Management and Policy. Questions were ranked within themes, and a workshop was used to discuss, refine, and finalize a list of 25 key questions. The 25 questions are presented as a guide for MCE and TME researchers, managers, and funders for future work and collaborations

    Key Questions for Research and Conservation of Mesophotic Coral Ecosystems and Temperate Mesophotic Ecosystems

    No full text
    Mesophotic coral ecosystems (MCEs) and temperate mesophotic ecosystems (TMEs) have received increasing research attention during the last decade as many new and improved methods and technologies have become more accessible to explore deeper parts of the ocean. However, large voids in knowledge remain in our scientific understanding, limiting our ability to make scientifically based decisions for conservation and management of these ecosystems. Here, we present a list of key research and conservation questions to enhance progress in the field. Questions were generated following an initial open call to MCE and TME experts, representing a range of career levels, interests, organizations (including academia, governmental, and nongovernmental), and geographic locations. Questions were refined and grouped into eight broad themes: (1) Distribution, (2) Environmental and Physical Processes, (3) Biodiversity and Community Structure, (4) Ecological Processes, (5) Connectivity, (6) Physiology, (7) Threats, and (8) Management and Policy. Questions were ranked within themes, and a workshop was used to discuss, refine, and finalize a list of 25 key questions. The 25 questions are presented as a guide for MCE and TME researchers, managers, and funders for future work and collaborations
    corecore